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      Fundamental Questions:

•  Will the universe last forever?

•  Is the universe infinite?

•  What is the universe made of?

            An unusual moment in human history:

At the beginning of this century, Einstein developed the 
conceptual tools to address these questions empirically.

In the past decade or so, technology has advanced to the 
point that we can now make the measurements that begin to 
answer these fundamental questions.

        
   Progress is now being made with large scientific 
   programs, including the Supernova Cosmology Project

 

   and the Cosmic Microwave Background satellites: 
   COBE,  MAP, and PLANCK.

Today's Presentation: 
A concept for a definitive, precision cosmology measurement.
We are proposing a detailed study phase, 
leading to future reviews before a project start.



Science's Breakthrough of the Year:
The Accelerating Universe
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The implications of an accelerating universe:

1.  The expansion is not slowing to a halt and then collapsing
    (i.e., the universe is not "coming to an end").    
     In the simplest models, it will expand forever.

2.  There is a previously unseen energy pervading
     all of space that accelerates the universe's expansion.

      This new accelerating energy ("dark energy") has
      a larger energy density than the mass density of 
      the universe (or else the universe's expansion
      wouldn't be accelerating).

What we don't know is:

1.   How much of mass density and dark energy density
      is there?   I.e., how much dark matter and dark energy
      do we need to look for?   
      The answer to this question determines the "curvature"
      of the universe, and can tell us about the extent of the
      universe:  infinite or finite.

2.   What is the "dark energy"?   Particle physics theory
      proposes a number of alternatives, each with different
      properties that we can measure.   Each of the alternative
      theories raises some important questions/problems of 
      fundamental physics. 
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What's wrong with a non-zero
vacuum energy / cosmological constant?

Two coincidences:

•  Why so small?

Might expect      Λ  ~  m

This is off by ~120 orders of magnitude!

• "Why now?"

R  =  – 4πG  (ρ + 3p)

MATTER:    	 	     p = 0          	 ρ ∝ R
VACUUM ENERGY:    p = –ρ          ρ ∝ constant

  R   3

8πG
4
Planck

–3

..

time

energy
density

mass
  energy
     density

vacuum
energy
density



What's wrong with a non-zero
vacuum energy / cosmological constant?

What are the alternatives?

Two coincidences:

 New Physics:

    “Dark energy”: Dynamical scalar fields, “quintessence”,...

•  Why so small?

Might expect      Λ  ~  m

This is off by ~120 orders of magnitude!

• "Why now?"

R  =  – 4πG  (ρ + 3p)

MATTER:    	 	     p = 0          	 ρ ∝ R
VACUUM ENERGY:    p = –ρ          ρ ∝ constant

  R   3

8πG
4
Planck

–3

..

R
–3(1+w)

COSMIC
  STRINGS:

    		     p = –1/3 ρ          	 ρ ∝ R

General
  Equation of State:    p = wρ  ρ ∝ 

–2

and  w  can vary with time
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For a definitive measurement

to provide a pillar of our cosmological theory

requires 

	 a much larger statistical sample of supernovae,

	 with much better controlled measurements, 

	 over a much larger range of redshifts,

that cannot be obtained

with existing or planned facilities.
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satellite overview
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•  ~2 m aperture telescope
Can reach very distant SNe.

•  1 square degree mosaic camera, 1 billion pixels
Efficiently studies large numbers of SNe.

•  3-channel spectroscopy,  0.3um -- 1.7um
Detailed analysis of each SN.

Dedicated instrument.

Designed to repeatedly observe an area of sky.

Essentially no moving parts.

4-year construction cycle.
3-year operation for experiment

(lifetime open-ended).

Satellite:

Instruments:



Search Strategy - Deep & Often
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Supernova
Discovery

(as seen from 
Hubble Space
Telescope)

Difference
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Supernova 1998ba
Supernova Cosmology Project



Cosmological Params.
Dark Matter Properties

Dark
Energy Properties
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w = 1             0.02    0.02    0.05   <0.01

w = 1, flat                            0.01    0.02    

   w = const., flat                    0.02    0.02     0.05    <0.01    

  ΩM , Ωk  known
      w = const.                                                  0.02    <0.01    

  ΩM , Ωk  known
   w(z) = w + w’z                                             0.08    <0.01     0.12    0.15       

ΩM ΩΛ
or Ωd.e.

stat sys stat sys

w

w'

stat sys

stat sys

Planned 1-year baseline 
statistical and systematic 
uncertainty on...

Assuming:
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Baseline:   Assuming that there are no improvements on our current understanding
and calibration of supernovae, and that we only analyze 1 out of 3 years worth of data.

More Optimistic Target:  With a full data set of 6000 supernovae and a reasonable 
improvement in calibration dispersion, expect factor of ~3 improvement in 
statistical uncertainties and factor of ~2 improvement in systematic uncertainties.
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Binned simulated SNAP data compared with 
Dark Energy models currently in the literature.
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Type II supernova expanding photosphere
Type Ia supernova calibrated candle

Weak lensing
Strong lensing statistics. ΩΛ
Galaxy clustering, P(k)
z > 1 clusters and associated lensing
. . .

GRB optical counterparts: rates, lightcurves, and spectra
MACHO optical counterparts by proper motion
Galaxy populations and morphology to co-added m = 32 
Target selection for NGST  
Kuiper belt objects
Supernova rates, star formation rates
Supernova phenomenology studies
Low surface brightness galaxies, luminosity function
. . .

science goals

Cosmological Parameters, Dark Matter,...

...and Beyond

Archive data distributed:
	 deeper than Hubble Deep Field 
	 and 7000 times  larger

Guest Survey Program
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What makes the supernova measurement special?

Control of systematic uncertainties.

At every moment in the explosion event,
each individual supernova is “sending” us a rich stream
of information about its internal physical state.
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Supernova spectra vary
 as the supernova brightens and fades

days 
rest frame

Wavelength in SN Rest Frame

Scaled Flux +
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       for a definitive supernova cosmology measurement...

The most demanding SNAP data requirements are devoted to 
 eliminating and controlling all sytematic uncertainties.
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However,

...it is necessary but NOT sufficient to find and study
   • more SNe Ia
   • farther SNe Ia
because the statistical uncertainty is already 
within a factor of two of the systematic uncertainty.

What makes the supernova measurement special?

Control of systematic uncertainties.



•  Measure  Ω    and  Λ
•  Measure w and w(z)

M

SCIENCE

•  Sufficient (~2000) 
    numbers of SNe Ia

•  ...distributed in redshift

•  ...out to z < 1.7

STATISTICAL 
REQUIREMENTS

Identified & proposed 
systematics:

   •  Measurements to 
       eliminate / bound 
       each one to +/-0.02mag

SYSTEMATICS 
REQUIREMENTS

SATELLITE / INSTRUMENTATION 
REQUIREMENTS

DATA SET 
REQUIREMENTS

•  Discoveries 3.8 mag before max.
•  Spectroscopy with S/N=10 at 15 Å bins.
•  Near-IR spectroscopy to 1.7 µm.

•
•
•

•  ~2-meter mirror
•  1-square degree imager
•  3-channel spectrograph

(0.3 µm to 1.7 µm)

Derived requirements:
  •  High Earth orbit
  •  ~50 Mb/sec bandwidth

•
•
•
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NSF and NASA have well-established and well-known 
traditions in astrophysics and cosmology.

DOE also has a long history of astrophysics and 
cosmology contributions, but it is less well known:

Particle physics/cosmology theory: 
Inflation, Quintessence, BBN...

Supernova cosmology measurements
Keck telescope
CMB studies
CCD technology
HEP large, complex detector  experience
Supernova theory/simulations
Supercomputer centers / Grand challenges



We have an unusual opportunity
to answer fundamental questions of physics

Is the universe infinite?  
Is space curved?
What is the fate of the universe?
What is the "Dark Energy" that is causing

the universe expansion to accelerate?

with a definitive, precision cosmology measurement.

The first complete calibrated supernova dataset,
     2 orders of magnitude larger statistics (>2000 SNe),
     extending much farther in distance and in time.
A ±0.02 measurement of the mass density.
A ±0.05 measurement of the vacuum energy density.
A ±0.06 measurement of the curvature.
A ±0.05 measurement of the Equation of State 

of the "Dark Energy"

January 1, 

5x10
9 BC

January 1, 

2x10
9 BC

January 1, 

7x10
9 BC

January 1, 

9x10
9 BC

January 1, 

10x10
9 BC

January 1, 

7x10
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Height Marks on a “Cosmic Doorframe”
A fundamental measurement of cosmology.
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