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Southwest Research Institute has worked in “sloshing” since before the start of the US
space program. Because of the wide-ranging nature of this work, NASA in the mid-1960s
requested Dr. Norm Abramson, who was then Director of SwRI’s Department of
Mechanical Sciences and the leader of the sloshing group, to organize the preparation of
a monograph that would capture pretty much all that was then known about sloshing and
related subjects. A team of experts from SwRI, NASA, and other organizations wrote the
individual chapters, under the direction of an Advisory Committee composed of Dr.
Abramson, Dr. Douglas Michel of NASA-OAST, Dr. George Brooks of NASA-Langley,
and Dr. Helmut Bauer of Georgia Tech. The monograph was published in 1966 as NASA
SP-106 “The Dynamic Behavior of Liquids in Moving Containers”. It proved to be
extremely popular, and the print run of several thousand copies was rapidly distributed.
Demand for it continued through the years, so it was re-issued several times with minor
corrections. Unfortunately, NASA SP-106 is now out of print.

NASA SP-106 contains a lot of information, although the information is not
always presented in a way that makes it easy to understand. In addition, many of the
numerical results are presented as graphs and tables derived from approximate analytical
methods (because of the limitations of 1960’s-era computers), and these results are now
available in more accurate form. Furthermore, progress in sloshing and related
technology has continued to advance since the mid-1960s, especially in low-gravity fluid
mechanics and “fluid management”. For these reasons, it seemed to me that an update
and revision of SP-106 would still be valuable to the sloshing community, and so I have
prepared the present monograph.

This update does not cover all the subjects included in NASA SP-106. Some
topics were omitted because they discuss marginally-related material accessible
elsewhere (e.g., the principles of similitude as applied to scale models) or the material is
quite specialized or does not now appear to be as important as it was in 1966 (e.g.,
vertical excitation of tanks). Other topics, such as structural dynamics, are still important
but are omitted because they are covered extensively elsewhere. The update focuses
primarily on the topics discussed in the SP-106’s Chapter 2: Lateral Sloshing in
Moving Containers, Chapter 3: Nonlinear Effects in Lateral Sloshing, Chapter 4:
Damping of Liquid Motions and Lateral Sloshing, Chapter 6: Analytical
Representation of Lateral Sloshing by Equivalent Mechanical Models, Chapter 7:
Vehicle Stability and Control (but greatly condensed) and Chapter 11: Liquid
Propellant Behavior at Low and Zero G (greatly expanded with much new material on
sloshing and propellant management devices). A new chapter is included on Liquid
Motions in a Spinning Tank because of the importance of this subject to spacecraft
stability. The chapters have been re-ordered to make the presentation more consistent.
All the chapters contain new material from research and references that have become
available since NASA SP-106 was written. Wherever the original material is retained,
the original references were consulted to prevent propagation of errors in the update.
Some of the lengthy mathematical presentations used to derive numerical results in
Chapter 2 of NASA SP-106 (which is Chapter 1 of the update) are not included in the
update, because equivalent results are now readily available from computer codes. In all
cases, basic derivations have been clarified, and there is more emphasis throughout on
physical interpretation of the results and on equivalent mechanical models.
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The update emphasizes, just as NASA SP-106 does, literature and results of
interest to spacecraft applications. Thus, the extensive literature on tanker trucks, ships,
and other applications is not included except when some of the results are of interest to
spacecraft. The Russian-language literature is also not covered thoroughly, primarily
because of difficulties in obtaining English translations, even though this literature
contains a lot of valuable material.

This update is complete in itself. When a graph or figure contained in NASA SP-
106 was needed, it was redrawn, and generally, the new graphs are based on re-computed
theoretical results or on the experimental results given in the cited references, so as to
eliminate any errors in the original graphs. In addition, many new figures and graphs are
included. Unfortunately, the photographs in NASA SP-106 are no longer available and
so could not be included. In the update, text printed in a smaller type size indicates that
the material is supplementary to the main text.

For historical completeness, a listing of all the references cited in NASA SP-106
(even those not used in the update) is contained in an Appendix.

SLOSH Computer Code
Many of the linear, lateral slosh results presented in the update were computed from the
computer program SLOSH. This program predicts the equivalent mechanical model and
natural frequencies of linear sloshing for any axisymmetric tank. It is written in the
Visual Basic language and contains on-screen instructions. The program runs on a PC
using any version of Microsoft Windows. The basic theory is described in the Appendix
to Chapter 3. SLOSH is available on request.

SP-106 Authors
The authors of NASA SP-106 and their affiliations at the time it was issued are listed
below.

H. NORMAN ABRAMSON, Southwest Research Institute
HELMUT F. BAUER, Georgia Institute of Technology
GEORGE W. BROOKS, NASA-Langley Research Center
WEN-HWA CHU, Southwest Research Institute
JOHN F. DALZELL, Southwest Research Institute
FRANKLIN T. DODGE, Southwest Research Institute
DANIEL D. KANA, Southwest Research Institute
WILLIAM C. REYNOLDS, Stanford University
HUGH M. SATTERLEE, Lockheed Missiles & Space Co.
SANDOR SILVERMAN, Southwest Research Institute

© 2000 by Southwest Research Institute



iii

TTTTABLE OFABLE OFABLE OFABLE OF    CCCCONTENTSONTENTSONTENTSONTENTS
PAGE

LLLLATERAL ATERAL ATERAL ATERAL SSSSLOSHING IN LOSHING IN LOSHING IN LOSHING IN MMMMOVING OVING OVING OVING CCCCONTAINERSONTAINERSONTAINERSONTAINERS............................................................................................................................................................................................................................1111
1.1 INTRODUCTION .....................................................................................................................1
1.2 MATHEMATICAL BACKGROUND............................................................................................2
1.3 SOLUTION OF EQUATIONS FOR A RECTANGULAR TANK ........................................................5
1.4 CIRCULAR CYLINDRICAL TANK ..........................................................................................14
1.5 SECTOR-ANNULAR CYLINDRICAL TANK.............................................................................14
1.6 HORIZONTAL CYLINDRICAL TANK ......................................................................................16
1.7 SPHERICAL TANK................................................................................................................17
1.8 SPHEROIDAL TANK .............................................................................................................18
1.9 TOROIDAL TANK.................................................................................................................19
1.10 SOME PRACTICAL IMPLICATIONS ........................................................................................20
1.11 VERTICAL SLOSHING...........................................................................................................20
1.12 CONCLUDING REMARKS .....................................................................................................21
1.13 REFERENCES.......................................................................................................................21
APPENDIX:  LINEAR SLOSHING ANALYSIS BY FINITE ELEMENT STRUCTURAL CODES ...............23

DAMPING OF LATERAL SLOSHINGDAMPING OF LATERAL SLOSHINGDAMPING OF LATERAL SLOSHINGDAMPING OF LATERAL SLOSHING........................................................................................................................................................................................................................................................................................................25252525
2.1 INTRODUCTION ...................................................................................................................25
2.2 VISCOUS DAMPING FOR TANKS OF VARIOUS SHAPES .........................................................26
2.3 SLOSH DAMPING BY RING BAFFLES ....................................................................................29
2.4 DAMPING BY MOVABLE AND FLOATING BAFFLE DEVICES..................................................35
2.5 DAMPING BY NON-RING BAFFLES.......................................................................................37
2.6 DAMPING BY PERFORATED BULKHEADS.............................................................................37
2.7 REFERENCES.......................................................................................................................39

MECHANICAL MODELS OF SLOSHINGMECHANICAL MODELS OF SLOSHINGMECHANICAL MODELS OF SLOSHINGMECHANICAL MODELS OF SLOSHING................................................................................................................................................................................................................................................................................43434343
3.1 INTRODUCTION ...................................................................................................................43
3.2 ANALYTICAL DERIVATION OF MODEL PARAMETERS ..........................................................43
3.3 INCLUSION OF DAMPING .....................................................................................................49
3.4 MECHANICAL MODEL PARAMETERS FROM THE SLOSH CODE...........................................51
3.5 EXPERIMENTAL DERIVATION OF MODEL PARAMETERS ......................................................51
3.6 NONLINEAR MECHANICAL MODELS....................................................................................55
3.7 REFERENCES.......................................................................................................................59
APPENDIX:  SLOSH CODE THEORY AND NUMERICS .................................................................60

FLUID MANAGEMENT IN MICROGRAVITYFLUID MANAGEMENT IN MICROGRAVITYFLUID MANAGEMENT IN MICROGRAVITYFLUID MANAGEMENT IN MICROGRAVITY ............................................................................................................................................................................................................................................................65656565
4.1 HYDROSTATICS AND HYDRODYNAMICS IN ZERO OR MICROGRAVITY.................................65
4.2 THERMODYNAMICS OF CAPILLARY SYSTEMS .....................................................................70
4.3 AXISYMMETRIC INTERFACE SHAPE.....................................................................................73
4.4 STABILITY OF ZERO-G INTERFACES....................................................................................77
4.5 LOW-G SLOSHING IN AXISYMMETRIC TANKS......................................................................82
4.6 FLUID MANAGEMENT CONSIDERATIONS IN LOW GRAVITY.................................................93
4.7 PROPELLANT MANAGEMENT AND LIQUID ACQUISITION DEVICES.......................................97
4.8 PMD CONSIDERATIONS FOR CRYOGENIC LIQUIDS............................................................108
4.9 REFERENCES.....................................................................................................................111

NONLINEAR EFFECTS IN LATERAL SLOSHINGNONLINEAR EFFECTS IN LATERAL SLOSHINGNONLINEAR EFFECTS IN LATERAL SLOSHINGNONLINEAR EFFECTS IN LATERAL SLOSHING............................................................................................................................................................................................................111111111111
5.1 INTRODUCTION .................................................................................................................117
5.2 NONLINEAR EFFECTS ARISING FROM TANK SHAPE...........................................................118
5.3 THEORY OF LARGE AMPLITUDE MOTIONS ........................................................................119
5.4 ROTARY SLOSHING ...........................................................................................................125
5.5 COMMENTS ON THE SUCCESSIVE APPROXIMATION METHOD............................................128
5.6 REFERENCES.....................................................................................................................129



iv

LIQUID MOTIONS IN A SPINNING TANKLIQUID MOTIONS IN A SPINNING TANKLIQUID MOTIONS IN A SPINNING TANKLIQUID MOTIONS IN A SPINNING TANK................................................................................................................................................................................................................................................................131131131131
6.1 INTRODUCTION .................................................................................................................131
6.2 LIQUID MOTIONS IN A SLOWLY SPINNING AXISYMMETRIC TANK .....................................133
6.3 TANKS OFF THE SPIN AXIS – EXACT THEORY ...................................................................136
6.4 TANKS LOCATED OFF THE SPIN AXIS – APPROXIMATE THEORY .......................................139
6.5 ENERGY DISSIPATION .......................................................................................................146
6.6 STABILITY OF A ROTATING INTERFACE IN ZERO-G............................................................150
6.7 REFERENCES.....................................................................................................................151
APPENDIX:  ANALYTICAL ENERGY DISSIPATION ESTIMATE.....................................................153

SPACECRAFT STABILITY AND CONTROLSPACECRAFT STABILITY AND CONTROLSPACECRAFT STABILITY AND CONTROLSPACECRAFT STABILITY AND CONTROL........................................................................................................................................................................................................................................................157157157157
7.1 INTRODUCTION .................................................................................................................157
7.2 SIMPLIFIED EQUATIONS OF MOTION..................................................................................157
7.2 STABILITY ANALYSIS ........................................................................................................163
7.3 TYPICAL CONCLUSIONS OF STABILITY ANALYSES ............................................................165
7.4 REFERENCES.....................................................................................................................166

NASA SP-106 REFERENCES BY CHAPTERNASA SP-106 REFERENCES BY CHAPTERNASA SP-106 REFERENCES BY CHAPTERNASA SP-106 REFERENCES BY CHAPTER............................................................................................................................................................................................................................................167167167167
1. INTRODUCTION .................................................................................................................167
2. LATERAL SLOSHING IN MOVING CONTAINERS ..................................................................168
3. NONLINEAR EFFECTS IN LATERAL SLOSHING....................................................................170
4. DAMPING OF LIQUID MOTIONS AND LATERAL SLOSHING..................................................171
5. SIMULATION AND EXPERIMENTAL TECHNIQUES ...............................................................173
6. ANALYTICAL REPRESENTATION OF LATERAL SLOSHING BY EQUIVALENT MECHANICAL

MODELS .......................................................................................................................175
7. VEHICLE STABILITY AND CONTROL ..................................................................................176
8. VERTICAL EXCITATION OF PROPELLANT TANKS ...............................................................177
9. INTERACTION BETWEEN LIQUID PROPELLANTS AND THE ELASTIC CONTAINER ................179
10. SPECIAL TOPICS ................................................................................................................181
11. LIQUID PROPELLANT BEHAVIOR AT LOW AND ZERO G......................................................182
APPENDIX.  PHYSICAL PROPERTIES OF SELECTED LIQUIDS........................................................185


PHYSICAL PROPERTIES OF SOME PROPELLANTS AND MODEL LIQUIDS.........................................187

AUTHOR INDEXAUTHOR INDEXAUTHOR INDEXAUTHOR INDEX............................................................................................................................................................................................................................................................................................................................................................................................................................................189189189189
SUBJECT INDEXSUBJECT INDEXSUBJECT INDEXSUBJECT INDEX........................................................................................................................................................................................................................................................................................................................................................................................................................................193193193193



CHAPTER 1

1

LLLLATERALATERALATERALATERAL    SSSSLOSHING INLOSHING INLOSHING INLOSHING IN    MMMMOVINGOVINGOVINGOVING    CCCCONTAINERSONTAINERSONTAINERSONTAINERS

This chapter is a revision of Chapter 2 of SP-106; the original authors were SANDOR SILVERMAN and H. NORMAN
ABRAMSON.

1.1 Introduction
By lateral sloshing is meant the standing wave formed
on the surface of a liquid when a tank partially filled
with liquid is oscillated. Figure 1.1 shows such a wave
schematically The standing wave moves up one side of
the tank and down the other; then the up half-wave
moves down and the down half-wave moves up, and so
on. The wave motion has a natural frequency which
depends on (a) the tank shape and (b) the acceleration
of gravity (in a laboratory) or the axial acceleration of
the tank (for a missile under thrust).

Equivalent mechanical models of sloshing
The main dynamical effect of lateral sloshing is a
horizontal oscillation of the liquid center of mass
relative to the tank. This effect can be equally
well represented by an equivalent mechanical
model. Figure 1.2 illustrates two versions of
such a model. In the model on the left, a
pendulum represents the oscillation of the
liquid c.m., while in the model on the right, a
mass on a spring represents it. (These kinds of
models will be discussed in detail in Chapter
3.) Both models give the same forces and
torques, but the pendulum model has the
advantage that its natural frequency (g/L)0.5

varies with changes in the g acceleration
exactly as does the sloshing frequency of the
liquid. The spring-mass model has to change its
spring constant K when there is a change in g.

Both models show that a horizontal or
lateral motion of the tank causes the liquid to slosh (i.e., causes the pendulum or sprung
mass of the model to oscillate relative to the tank). They also show that an axial
(vertical) oscillation of the tank does not generally set the liquid into motion.

To be more precise, when the frequency of an axial oscillation is very close to one-half the slosh natural
frequency, the liquid surface becomes unstable and a slosh wave is excited parametrically. The pendulum
model displays this same kind of instability. Since the forcing frequency has to be almost exactly one-half
the slosh natural frequency to create the instability, “vertical” sloshing does not occur much in
applications. Vertical sloshing is discussed briefly at the end of this chapter.

The various sloshing discussions given in this chapter can be understood more
easily by keeping in mind the mechanical models shown in Figure 1.2 and picturing how
such a mechanical model would respond to various kinds of tank motions.

tank oscillation

  free
surface

oscillating
   wave

Figure 1.1. Schematic illustration
of a slosh wave

L

Pendulum Model Spring-Mass Model

M
M

1

2
K

free surface

1

2
K

Figure 1.2. Mechanical models of sloshing
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Higher order sloshing responses
Figure 1.1 shows a slosh wave that has one peak and one valley (which is actually only
one half of a complete standing wave). This is the fundamental antisymmetric wave, and
it has the lowest natural frequency. Waves with two or more peaks or valleys with higher
natural frequencies can also occur. The mechanical model shown in Figure 1.2 can
represent these higher order waves by incorporating an additional pendulum or sprung-
mass for each mode. The magnitudes of the pendulum or sprung mass for these modes
are very small compared to the fundamental mode and, thus, higher order modes are
usually of little concern. But for non-axisymmetric tanks, there is a fundamental mode
for each of the principal axes of the cross-section, and the masses of these modes can all
be comparable; if they are, a pendulum or sprung-mass is needed for each mode.

SLOSH computer code
The basic theory of linear sloshing for several example tank shapes are reviewed in this
chapter. The examples can be used to obtain a quick estimate of sloshing frequencies or
forces. More detailed results can be obtained from the PC-based SLOSH computer code,
which can determine the characteristics of sloshing in any axisymmetric tank shape. The
SLOSH code is discussed in the Appendix to Chapter 3.

1.2 Mathematical Background
To explain the basic theory most clearly, the mathematical details of lateral sloshing are
discussed for a rigid tank and an ideal liquid having no viscosity. These assumptions
allow classical potential flow theory to be used. The wave motion is also assumed to be
linear. Linear motions or linear responses mean different things in different contexts, but
here it means that the amplitude of the wave and of the liquid motion is linearly
proportional to the amplitude of the imposed tank motion, and the natural frequency of
the slosh wave is not a function of the wave amplitude. The generalized linear theory is
discussed more completely in FOX AND KUTTLER [1983]. Nonlinear corrections to the
linear theory are discussed in Chapter 5.

For simplicity, the motion of the tank is assumed to be harmonic, which means
that it varies with time as exp(iΩt) where Ω is the frequency of the motion. More
complicated time-dependent motions of the tank can be considered by the use of Fourier
series or Fourier integrals. But complicated and impulsive tank motions can best be
handled by using the equivalent mechanical models discussed in Chapter 3.

Basic differential equations and boundary
conditions

Generally, we are interested in
axisymmetric tanks for space
applications but the basic differential
equations and boundary conditions for
lateral sloshing are most clearly
expressed in a Cartesian x,y,z coordinate
system, as shown in Figure 1.3. This is
therefore the coordinate system used in
this section. For a general case, the tank
has a translational oscillation along the x
and y axes, pitch and yaw oscillations

x

y

z

o
0

Z

X

mean free
 surface

αy

(a/2 , b/2, h/2)

Yαz

Figure 1.3  Coordinate system for the derivation of
basic slosh equation
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about the x and y axes, and a roll oscillation about the z axis. For clarity, Figure 1.3
shows only one angular oscillation αy and a roll excitation αz. The x,y,x coordinate
system is fixed to and moves with the tank, whereas the inertial X,Y,Z coordinate system
is stationary.

Velocity potential ΦΦΦΦ
Since the liquid is inviscid and the motion is assumed to be without vorticity, the slosh
velocity distribution can be derived from a velocity potential Φ. The x,y,z components of
the velocity u,v,w components are computed from the spatial derivative of the potential:

u
x

v
y

w
z

= = =∂Φ
∂

∂Φ
∂

∂Φ
∂

(1.1)

The basic differential equation that a velocity potential must satisfy everywhere in the
liquid volume is the condition of liquid incompressibility, which is given by:

0or0or0 2
2

2

2

2

2

2
=Φ∇=

∂
Φ∂+

∂
Φ∂+

∂
Φ∂=

∂
∂+

∂
∂+

∂
∂

zyxz
w

y
v

x
u (1.2)

The last form of this equation is written in vector notation and so applies to any
coordinate system.

Equations of motion
For a potential flow that does not contain vorticity, the fluid dynamics equations of
motion can be integrated directly to give the unsteady form of Bernoulli’s equation:

( ) )(
2
1 222 tfwvugzp

t
=++++

ρ
+

∂
Φ∂ (1.3)

where p is the fluid pressure, ρ is the fluid density, and g is the effective gravity directed
in the negative z direction (which is equal to gravity in a laboratory but is the negative of
the value of the axial acceleration for a space vehicle).

The velocities u,v,w are assumed to be so small that squared and higher power
terms of them can be neglected in comparison to linear terms; that is, the equations are
linearized. Since only the derivative of the potential has a physical meaning [for
example, look at Eq. (1.1)], constants or even functions of time can be added to the
definition of Φ whenever it is convenient. This allows the constant of integration f(t) in
Eq. (1.3) to be absorbed into the definition of Φ. The linearized form of Eq. (1.3) is thus:

0=+
ρ

+
∂
Φ∂ gzp
t

(1.4)

Boundary conditions at the free surface
Any mathematical function that is a solution of Eq. (1.2) must be specialized to satisfy
the boundary conditions at the tank walls and free surface. Equation (1.4) is used to
derive one of the boundary condition at the free surface. The surface is free to move, so
if the gas density is negligibly small compared to the liquid, the pressure at the surface is
equal to the static pressure po of the gas above it. Hence, for the liquid at the free surface,
the unsteady Bernoulli’s equation written is:

( ) ( ) 2for           ,,,,, hzptyxg
t

tzyx o =
ρ

−=δ+
∂

Φ∂ (1.5)
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Here, δ(x,y,t) is the small displacement of the free surface above the undisturbed level z
= h/2. If the equations were not linearized, Eq. (1.5) would have to be evaluated at the
actual displaced location z = h/2 + δ of the surface rather than at the equilibrium location
z = h/2. The difference between the two conditions (z = h/2 and z = h/2 + δ) turns out to
be a higher order term in δ and so can be neglected (this will be proved when nonlinear
analyses are considered in Chapter 5).

When g is small, the effects of surface tension have to be considered in Eq. (1.5). The gas
pressure is still po, but there is a difference in pressure between the liquid at the surface and the
gas on the other side of the surface, which depends on surface tension and the curvature of the
surface. This kind of “low-g” sloshing will be discussed in Chapter 4.

Equation (1.5) is the “dynamic” condition at the free surface. A “kinematic”
condition is needed to relate the surface displacement δ to the vertical component of the
liquid velocity at the surface. In a linearized form, this condition is simply:

∂δ
∂

∂Φ
∂t

w
z

z h= = =for 2 (1.6)

Equations (1.5) and (1.6) can be combined into a single condition written entirely
in terms of Φ (or δ) by differentiating Eq. (1.5) with respect to t, differentiating Eq. (1.6)
with respect to z, and combining the two equations to eliminate δ (or Φ). The result is:

2for02

2
hz

z
g

t
==

∂
Φ∂+

∂
Φ∂ (1.7)

Eventually, the time derivative of Φ will involve the natural frequencies of the sloshing.
Thus, Eq. (1.7) shows that these frequencies are directly related to the imposed
gravitational field, as was mentioned earlier.

Boundary conditions at the tank walls
Because viscosity and viscous stresses have been assumed to be negligibly small, the
only condition that can be imposed at a wall of the tank is that the liquid velocity
perpendicular to the plane of the wall has to be equal to the velocity Vn of the tank wall
perpendicular to itself (where n stands for the normal or perpendicular direction). The
usual “no-slip” condition cannot be imposed, and in general, the solutions will allow
slipping in a direction parallel to the wall.

If the tank were stationary, the boundary condition at the wall would therefore just
be that the component of the liquid velocity perpendicular to the wall is zero. This
condition leads to a standard type of boundary value problem. Here, however, the tank is
assumed to be oscillating back and forth, and this leads to a non-standard boundary value
problem. As we will see by some examples given below, this non-standard boundary
value problem can be solved by the use of Fourier series.

For some kinds of tank motion, the non-standard problem can be transformed into the standard
type by the mathematical trick of expressing the liquid motion in two parts: a rigid body-like
motion that is identical to the tank motion, and a motion of the liquid relative to the rigid body
motion. This transformation is the same as the transformation used in dynamics to express the
motion of a particle relative to a moving coordinate system. The transformation is written in
terms of the velocity potential as Φ = φc + φ where φc is the potential for the rigid body motion of
the tank. The boundary condition for Φ at a tank wall then reduces to ∂φc/∂n = Vn.. and ∂φ/∂n = 0.
Unfortunately, this trick cannot be used for rotational tank motions since the velocity potential φc
of the tank motion would have a non-zero value of vorticity.

Since the sloshing problem is linear, a series of individual problems can be
considered, one for each type of tank motion of interest, and the results added to get the
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velocity potential for the entire motion. Hence, various kinds of simple tank motion will
be considered in turn.

Horizontal motion parallel to the x axis.  For this case, the tank displacement is expressed
as X(t) = −iXoexp(iΩt). This choice makes the real displacement equal to XosinΩt. The
velocity components of the tank walls are v = w = 0 and u = iXoΩexp(iΩt). Thus, the
boundary conditions at the wetted surfaces of the tank are expressed as:

n ⋅∇Φ = i at wetted surfacesiX eo
tΩ Ω (1.8)

where n is the unit vector normal to the wetted surface. (As an example, for a vertical
wall perpendicular to the y-axis, n⋅∇Φ reduces to ∂Φ/∂x and Eq. (1.8) merely states that
the x-velocity of the liquid at the wall must equal the imposed x-velocity of the tank.)

Pitching about the y axis.  For this case, the angular oscillation of the tank walls is
expressed as αy(t) = −iαoexp(iΩt). The displacement of any point on a tank wall normal
to the tank wall is proportional to the axial distance of the point from the pitch axis: X(t)
= zαoexp(iΩt). There are also z-displacements of points on the bottom of the tank, which
are proportional to the x distance of a point from the pitch axis, or Z(t) = −xαoexp(iΩt).
These conditions can be combined into a single, vector boundary condition at the wetted
surfaces which is expressed as:

( ) t
o exz ΩΩα−=Φ∇⋅ i

zx een (1.9)

where ex is the unit vector in the x-direction and ez is the unit vector in the z-direction.
Rolling about the z axis.  If the tank has internal walls or is not axisymmetric, roll

oscillations αz = −i γoexp(iΩt) about the z axis will cause the liquid to oscillate and create
slosh waves. Generally, rolling is more important for an airplane than for a missile or
spacecraft, but it is considered here for completeness. The appropriate vector boundary
condition at the wetted walls is:

( ) t
o eyx ΩΩγ−=Φ∇⋅ i

xy een (1.10)

For an axisymmetric tank without any internal walls, a roll motion of the tank will “slip” around
the liquid without producing any liquid motion, because an inviscid liquid cannot sustain a shear
stress between the walls and the liquid. For a real liquid with viscosity, a roll motion will cause
some liquid motion in a thin boundary layer near the walls, but this motion will create little if any
wave motion on the free surface.

1.3 Solution of Equations for a Rectangular Tank
A rectangular tank “fits” the x,y,z coordinate system shown in Figure 1.3 and since the
solutions of Eq. (1.2) are familiar trigonometric sines and cosines, it is used as a detailed
example to show how the boundary conditions determine the sloshing motions [GRAHAM,
ET AL, 1952]. Initially, the tank is considered to be stationary, and the solutions for this
case are conventionally called the “eigenfunctions” of the problem.

Eigenfunctions of ∇∇∇∇2ΦΦΦΦ = 0
The potential solutions of interest are assumed to be harmonic in time, exp(iωt). For
much of this discussion, the time dependence of Φ can be ignored, but when time
derivatives are needed they are included by multiplying the potential by iω. The Φ(x,y,z)
eigenfunctions are found by the method of separation of variables, in which Φ(x,y,z) is
assumed to be the product of three individual functions ξ(x), ψ(y), and ζ(z) of the
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coordinates. This assumption is inserted into Eq. (1.2) and the entire equation is divided
by Φ = ξψζ to give:

1 1 1 0
2

2

2

2

2

2ξ
ξ

ψ
ψ

ζ
ζd

dx
d
dy

d
dz

+ + = (1.11)

Since ξ is only a function of x, ψ is only a function of y, and ζ is only a function of
z, each of the ratios in Eq. (1.11) must be independent of any coordinate and so must be
equal to a constant. The form of the solution depends on whether the constant is assumed
to be a positive or a negative number. To begin, both signs are assumed. The first set of
eigenfunctions, for negative constants for ξ and ψ and positive for ζ, is thus given by:

( )1 2

2
2

ξ
ξ λ ξ λ λd

dx
x A x B x= − ⇒ = +sin cos (1.12a)

( )1 2

2
2

ψ
ψ β ψ β βd

dy
y C y D y= − ⇒ = +sin cos (1.12b)

( )1 2

2
2 2 2 2 2 2

ζ
ζ λ β ζ λ β λ βd

dz
z E z F z= + ⇒ = + + +sinh cosh (1.12c)

where λ and β are constants. The second set is obtained by changing the signs:

( )1 2

2
2

ξ
ξ λ ξ λ λd

dx
x A x B x= ⇒ = +sinh cosh (1.13a)

( )1 2

2
2

ψ
ψ β ψ β βd

dy
y C y D y= ⇒ = +sinh cosh (1.13b)

( ) ( )1 2

2
2 2 2 2 2 2

ζ
ζ λ β ζ λ β λ βd

dz
z E z F z= − + ⇒ = + + +sin cos (1.13c)

Obviously, there are also other possibilities obtained by mixing positive and negative
constants in other ways. The simple solution:

( )Φ ( , ,x y z Gx Hy Kz Lxy Mxz Nyz= + + + + + (1.14)

is yet another possibility. All these solutions will be needed to satisfy the boundary
conditions for particular cases.

Eigenvalues
Some values of the constants λ and β naturally satisfy the boundary conditions of this
standard boundary value problem. These values are called eigenvalues. The natural
frequencies of the problem, in this case the sloshing frequencies, are determined by the
eigenvalues. Since the natural frequencies will be needed subsequently, they are
computed before considering the solutions for cases when the tank is in motion.

Conditions at walls.  As shown in Figure 1.3, the tank walls are at x = ± a/2 and y = ± b/2.
The unit normal vectors are ex = ± 1, ey = 0 for the two walls perpendicular to the x axis,
and ex = 0, ey = ± 1 for the two walls perpendicular to the y axis. Thus, the wall boundary
conditions become ∂Φ/∂x = 0 for x = ± a/2 and ∂Φ/∂y = 0 for y = ± b/2. By studying the
various possibilities presented by Eqs. (1.12), (1.13), and (1.14), it can be seen that Eqs.
(1.12) can be made to satisfy these conditions, and Eqs. (1.13) and (1.14) cannot (short
of making all the integration constants identically equal to zero). The relevant
possibilities for making ∂Φ/∂x = 0 for x = ± a/2 are:
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( )A n a B n a n= = = = − =0 2 0 2 1 1 2 3 4and or andλ π λ π , , , ..... (1.15a)

Likewise, the relevant possibilities for making ∂Φ/∂y = 0 for y = ± b/2 are:

( )C n b D n b n= = = = − =0 2 0 2 1 1 2 3 4and or andβ π β π , , , ..... (1.15b)

These give several choices for the sum (λ2 +β2)0.5, namely 2nπ/a, 2nπ/b, (2n - 1)π/a,
(2n - 1)π/b, [(2nπ/a)2 + (2nπ/b)2], [(2nπ/a)2 +(2n - 1)2π2/b2]0.5, and so on.

The requirement that ∂Φ/∂z = 0 for z = −h/2 at the tank bottom is satisfied for all
values of λ and β by choosing:

( )E F h= +





tanh λ β2 2 2 (1.15c)

in Eq. (1.12c).
Considering first two dimensional waves, the combinations of eigenvalues and

eigenfunctions lead to the following possibilities for the potential Φ = ξψζ:

( ) ( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ]{ }aznahnaznaxnAFzx ππ+ππ=Φ 2sinhtanh2cosh2cos,1 (1.16a)

( ) ( ) ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]{ }aznahnazn

axnBFzx
π−π−+π−

×π−=Φ
12sinh12tanh/12cosh                

12sin,2 (1.16b)

( ) ( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ]{ }bznbnbznbynCFzy ππ+ππ=Φ 2sinhtanh/2cosh2cos,3 (1.16c)

( ) ( ) ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]{ }bznbhnbzn

bynDFzy
π−π−+π−

×π−=Φ
12sinh12tanh/12cosh                 

12sin,4 (1.16d)

There are also three dimensional waves of various kinds, of which the following is
just one possibility:

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]
( )[ ] ( )[ ] ( )[ ]{ }azahaz

bymaxnBDFzyx
πγπγ+πγ

×π−π−=Φ
sinh2tanhcosh                    

12sin12sin,,5 (1.17)

where γ = (2n - 1)2 + (2m - 1)2(a/b)2.
Conditions at the free surface.  The boundary condition at the free surface is given by Eq.

(1.7). The time derivative ∂2Φ/∂t2 in this equation is replaced by the equivalent term
−ω2Φexp(iωt), and the factor exp(iωt) which multiplies both terms in Eq. (1.7) is canceled
out. Thus, as an example, the solution represented by Φ2 when it is inserted into Eq. (1.7)
and z set equal to h/2 gives the algebraic requirement that:

( )[ ] ( )[ ] ( )[ ] ( )[ ]{ }
( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ]{ } 02cosh2tanh2sinhsin      

2sinh2tanh2coshsin2

=κκ+κκκ
+κκ+κκω−

ahahahaxBFag
ahahahaxBF (1.18)

where κ = π(2n - 1).
Natural frequencies.  For this example, the natural frequencies are determined by the roots

of Eq. (1.18). After canceling out the common sin term and the constant BF in Eq. (1.18),
and simplifying the hyperbolic terms by the use of various hyperbolic identities, the
solution ω for the natural frequencies for these two-dimensional waves is found to be:

( ) ( ) 













−π






−π=ω

a
hn

a
gnn 12tanh122 (1.19a)
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where the subscript n indicates that ω depends on the mode number n. The frequency
decreases as the depth h decreases or the tank width a increases. The n = 1 mode has the
lowest of all natural frequencies.

Slosh wave shape.  With this solution for Φ2, the slosh wave shape is found from Eq. (1.6)
to be:

( ) ( ) ( ) ( ) 












−π













−π−

ω
−=δ

a
xn

a
hnn

a
BFtx 12sin12sinh12i2,

n
(1.19b)

When n = 1, the wave has zero amplitude at x = 0, a positive peak at one wall, and a
negative peak at the other wall; this is the fundamental antisymmetric wave. For n > 1,
there are intermediate peaks, and
the number of peaks increases with
n. Figure 1.4 shows a sketch of the
first three modes and the relative
shift of the liquid center-of-mass for
each mode. The c.m. shift for the
fundamental mode n = 1 is
substantially greater than that of the
other modes for the same maximum
wave amplitude. Since the c.m.
oscillation is the source of the
slosh-induced forces and torques,
the n = 1 wave produces a much
greater force and torque than any
other mode.

Symmetrical modes.  The symmetrical slosh modes are found similarly by starting with Φ1
rather than Φ2. The symmetric mode natural frequencies, which are all higher than the
corresponding antisymmetrical mode frequencies, are given by the relation:

( ) ( )[ ]ω π πm m g a m h a2 2 2= tanh (1.20)

The first few symmetrical wave
shapes are shown in Figure 1.5.
Since there is no lateral shift of the
liquid c.m. for any of these modes,
they produce no lateral forces or
torques.

2-D “y”-modes.  The natural frequencies
of the two dimensional “y”
antisymmetric and symmetric modes
(when occur when the tank has a
translational oscillation along the y-
axis) are determined by the same
process, starting with Φ3 and Φ4. The results are the same as the corresponding x-mode
results with the width a replaced by the width b.

Three dimensional modes.  The natural frequencies of the modes that vary with both x and y
can be determined by a similar process, starting with Φ5. The result is given by:

c.m. shift c.m. shift c.m. shift

n = 1 mode n = 2 mode n = 3 mode

Figure 1.4.  Slosh wave shapes for first three
antisymmetrical x-modes of a rectangular tank.

m = 1 mode m = 2 mode m = 3 mode

Figure 1.5.  Slosh wave shapes for first three
symmetrical x-modes for a rectangular tank.
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ω γ η γ ηm n n m n m
a
b

g
a

a
b

h
a, tanh2 2 2

2
2 2

2

= + 































+ 































(1.21)

where γn is either 2πn or 2π(n - 0.5) depending on whether the three dimensional wave is
symmetrical or antisymmetric in the x-direction, and ηm is likewise 2πm or 2π(m - 0.5).
The wave shapes are a combination of the two-dimensional x- and y-mode shapes.

Forced motion - oscillatory translation of the tank
The free (eigenfunction) slosh modes are the basis for constructing a solution when the
tank is forced to oscillate. For a first example, the tank is assume to oscillate along the x
axis. For a rectangular tank, the boundary condition Eq. (1.8) therefore reduces to:

∂Φ
∂

∂Φ
∂x

X e x a
y

y bo
i t= = ± = = ±Ω Ω for for2 0 2; (1.22)

The free surface and bottom boundary conditions are the same as for free oscillations.
Oscillating the tank in the x-direction creates x-antisymmetrical waves, so the

forced motion solution involves a series of the Φ2 sloshing modes. Since these modes
satisfy the condition that ∂Φ/∂x = 0 for x = ± a/2 rather than the conditions given by Eq.
(1.22), it is necessary to add on the x-varying part of the potential given by the simple
solution Eq. (1.14). Altogether, the trial solution is assumed to be:

ti

n
nnnnno e

a
z

a
h

a
z

a
xAxA Ω

∞

= 























λ



λ+



λ



λ+=Φ ∑

1

sinh
2

tanhcoshsin (1.23)

For compactness, the symbol λn is used for (2n - 1)π in Eq. (1.23) and the product of the
integration constants BF of Φ2 has been replaced by another constant An, where the
subscript n indicates that the constant depends on the mode in question.

Note that ∂Φ/∂y ≡ 0 identically and that ∂Φ/∂z = 0 at the bottom of the tank
z = − h/2. So if Ao is chosen to be equal to ΩXo, the potential Φ will satisfy all the wall
boundary conditions. The requirements for satisfying the free surface condition are now
investigated. Substituting Φ into the free surface condition Eq. (1.7) gives:

0cosh
2

tanhsinhsin        

sinh
2

tanhcoshsin

1

1

2

=


























λ






λ+






λ






λ





 λ

+

























λ





λ+





λ





λ+ΩΩ−

∑

∑
∞

=

∞

=

n
nnnn

n
n

n
nnnnno

a
h

a
h

a
h

a
x

a
Ag

a
h

a
h

a
h

a
xAxX

(1.24)

This equation in effect specifies the integration constants An in terms of X0. But to
determine them explicitly, the x in the first term of Eq. (1.24) has to be written as a
Fourier series of sin(λnx/a) terms (which is possible because the sin(λnx/a) terms are
orthogonal over the interval −a/2 <x < a/2). This process gives:

( ) ( )axax n
n

n n
λ−











λ
= −

∞

=
∑ sin12 1

1
2

2
(1.25)
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By replacing the x term in Eq. (1.24) with this series, terms can be grouped with
respect to each sin(λnx/a), which allows each An to be solved for one at a time (again
because the sin terms are orthogonal). After some algebra and the substitution of Eq.
(1.19a) for the natural frequencies, the final expression for the velocity potential is found
to be:

( ) ( ) ( )






×



 π−











Ω−ω
Ω

−π
−+−=Φ ∑

∞

=

−
Ω

1
22

2

22

1
i 12sin

)12(
14,,

n n

n
t

a
xn

n
axAetzx

( ) ( )[ ]
( ) ( )[ ]

cosh
cosh

2 1 2
2 1

n z a h a
n h a

− +
−







π
π

(1.26)

Forces and torques.  The slosh characteristics of most interest in applications are the natural
frequencies and the forces and torques exerted on the tank by the sloshing liquid. The
forces and torques are determined by integrating the unsteady part of the liquid pressure
p over the tank wall area. Equation (1.3) (linearized) shows how to determine this
pressure in terms of the velocity potential. The differential component of the x-force is
dFx = p(dAx), where dAx is the differential element of wall area normal to the x-axis. The
x-component of the force, Fx, is therefore found by integration:

dz
t

bdydzpdzdypF
h

h
ax

h

h

b

b
ax

h

h

b

b
axx ∫∫ ∫∫ ∫

−
=

∆−

− −
−=

∆+

− −
= ∂

Φ∂ρ−=−=

2

2
2

2

2

2

2
2

2

2

2

2
2 2 (1.27)

Equation (1.27) has been linearized with respect to both the unsteady pressure and the
wave amplitude ∆ = δ(x = ± a/2) at the wall, and advantage has been taken of the anti-
symmetry properties of Φ to combine the integrals over each wall. Substituting the
expression for Φ from Eq. (1.26) and performing the integration gives:

( )[ ]
( )∑

= Ω−ω
Ω

π−
π−+=

Ω−

N

n nliqo

xo
n

ahn
h
a

mX
F

1
22

2

332 12
12tanh81

i
(1.28)

Here Fxo is the amplitude of the oscillating force, and mliq = ρabh is the mass of liquid in
the tank.

According to Eq. (1.28), the force exerted on the tank becomes indefinitely large
when the excitation frequency Ω equals any of the slosh natural frequencies ωn. This is
because all viscous effects and other sources of damping have been neglected; these
effects will be discussed in the next chapter. Because of the (2n - 1)3 term in the
denominator of Eq. (1.28), the magnitude of the resonant force decreases as the order of
the slosh mode increases. For that reason, when damping is included, only the first mode
or perhaps the first two modes create substantial forces. Other characteristics to note
include:
• For low excitation frequencies (i.e., Ω → 0), the summation in Eq. (1.28) → 0, and

the force is just the product of the liquid mass and the tank acceleration; i.e., the
liquid responds as if were frozen.

• For high excitation frequencies (i.e., Ω >> ωn  ), the summation is independent of Ω,
and the force is again like a rigid body, with a mass mliq [1 - 8(a/hπ3 )tanh(πh/a)] that
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is somewhat less than the liquid mass; this implies that some of the liquid (near the
free surface) does not move with the tank.

• The z and y components of the force are zero.
Next, the torque M exerted on the tank is computed. This torque acts about the y-

axis and is caused by the pressure acting on the x-walls and the bottom of the tank. With
the y axis through the center of mass of the liquid, the differential element of torque is
dMy = −z(pdAx ) − x(pdAz ). Thus the total torque is given by:

dxdypxdzdypzM
a

a

b

b
hz

h

h

b

b
axy ∫ ∫∫ ∫

− −
−=

∆+

− −
= −−=

2

2

2

2
2

2

2

2

2
22 (1.29a)

Linearizing and combining terms give:

dx
t

xbdz
t

zbM
a

a
hz

h

h
ax

y ∫∫
−

−=
−

= ∂
Φ∂−

∂
Φ∂=

2

2
2

2

2
2

22 (1.29b)

After performing the indicated integrations, simplifying the result with various algebraic
and hyperbolic transformations1 , and rearranging the results to make for easy
comparisons with the force, it is found that the torque is given by:

( ) ( ) ( )( )[ ]
( )

( ) ( )( )[ ]
( ) 22

2

2

1
33

2
12
1

2

12
212tanh2

2
1                         

12
12tanh8

i

Ω−ω
Ω













ω
+

π−
π−−

π−
π−+=

Ω−
×∑

∞

=

nn

nliqo

yo

h
g

n
ahnha

n
ahnhaha

hmX

M

(1.30)

The g-term in the brackets on the right represents the gravitational torque of the
oscillating center of mass of the liquid. When Eq. (1.30) is compared to Eq. (1.27), we
can conclude that the terms that represent the oscillating masses in Eq. (1.27) are
multiplied by factors that have dimensions of length.

There is a rigid-body torque even in the limit of small excitation frequencies (when the resonating terms
disappear). For a true rigid body, there is no torque about the center of mass for a translational
acceleration. However, here the lack of a “top” for the liquid pressure to act on and counterbalance the
pressure on the tank bottom creates a liquid torque. The magnitude of this rigid-body torque is small.

Forced motion - pitching of the tank about the y axis
For the next example, the tank is assumed to pitch about the y axis. The boundary
conditions at the wall are given by Eq. (1.9); for a rectangular tank, they reduce to:

∂Φ
∂

α ∂Φ
∂

α
x

ze x a
z

xe z ho
t

o
t= = ± = − = −Ω ΩΩ Ωi ifor for2 2; (1.31)

These conditions cause more than a little complexity in the expression for the potential
because, as was discussed earlier, no single potential can be made to satisfy them both.
In fact, in addition to the forms of the potential given previously, all of which satisfy the
condition that the velocity is zero at the tank bottom, several other kinds of solutions of
the basic differential equation, Eq. (1.2), are needed. For example, a potential is needed

                                                     
1 For example, the relation:  1/sinhζ = 1/tanhζ - tanh(ζ/2) has been used.
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that can be used to expand z into a Fourier series to satisfy the first part of Eq. (1.31). A
suitable potential is:

( ) ( )[ ] ( )[ ]∑
∞

=

π−π−=Φ
1

12sinh12sin,
n

n hxnhznAzx (1.32)

The fact that Eq. (1.32) satisfies Eq. (1.2) can be verified by direct substitution. This
potential, however, introduces a complication because ∂Φ/∂z at the free surface now
involves sinh terms in the variable x, whereas the other potentials used so far involve
only sin terms in the variable x. This means that a Fourier series expansion is needed to
satisfy the free surface condition as well as the boundary conditions at the walls and
bottom. The algebra gets fairly messy although it is straightforward. The final result is:

( ) ( )
( )

( )[ ] ( )[ ]
( )[ ]

( ) ( )[ ] ( ) ( )[ ]
( )[ ] +






π−
−π−π−+










π−

π−π−
π−

−Ωα=Φ ∑
∞

=

Ω

ahn
ahaznaxnha

han
hznhzn

n
ehtzx

n

n
t

o

12sinh
212cosh12sin                  

212cosh
12sinh12sin

12
14,,

2
1

33
i2

( )( )
( )

( ) ( )[ ]
( )

( )[ ] ( ) ( )[ ]
( )[ ] 




π−
+π−π−












ω
+

π−
π−−

Ω−ω
Ω

π−
− ×∑

∞

=

ahn
ahaznaxn

h
g

n
ahnha

n
ha

nnn

n

12cosh
212cosh12sin            

12
212tanh2

2
1

12
14            222

2

1
22

(1.33)

The first summation in this expression does not have a resonant component and hence it
represents a liquid oscillation about the y-axis analogous to a rigid body.

Forces and torques.  Proceeding as before to integrate the liquid pressure distribution on the
walls and bottom, the x-component of the force exerted on the tank is found to be:

( )[ ]
( )

( )[ ]
( )








+

π−
π−−

π−
π−






+





=

αΩ− ∑
∞

=1
33

2

2 212
212tanh

2
1

12
12tanh8

12
1

i noliq

xo
ahn

ahn
n

ahn
h
a

h
a

hm
F


















Ω−ω
Ω







ω 22

2

2           
nnh

g (1.34)

Equation (1.34) shows that the force for a pitching oscillation is the same as the torque
for a lateral oscillation [Eq. (1.30)] when the amplitude Xo of the translation is replaced
by hαo. The torque exerted on the tank is given by:

( )[ ]
( )

+




−

ω
+











ωπ−
π−












+=

Ωα ∑
∞

=1
2233223 2

1
12

12tanh16
i n nnliq

y

oliq

yo

h
g

h
g

n
ahn

h
a

hm

I

hm

M

( )[ ]
( )

( )[ ]
( )

d)(cont'  
2
1

12
12tanh8

212
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where the moment of inertia Iy in this expression is given by:
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Here ISy is the y-moment of inertia of the frozen liquid about the liquid center of mass. A
number of terms have been combined or rearranged to derive Eq. (1.35)2.

Forced motion - rolling about the z axis
As a final example, rolling about the z-axis is considered. A roll oscillation creates a three-
dimensional motion, and waves are excited in both the x and y directions. Potentials of the form
given by Eq, (1.18) are therefore needed as well as other potentials to satisfy the boundary
conditions, which are given by Eq. (1.10). The total potential and the torque about the z-axis can
be derived by analogous methods as those used for pitching about the y-axis (there are no net
forces), but for brevity only the final results are given here.
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The natural frequencies ωmn depend on both the x and the y dimensions of the tank:
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where Amn = (2n - 1)2 + (a/b)2(2m - 1)2. The z-torque is given by:
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where Bmn = (2n - 1)2 - (a/b)2(2m - 1)2.

Basic theory summary
These examples for a rectangular tank demonstrate how a velocity potential is derived
for a specific tank shape and excitation. The analysis is similar for other tank shapes, but
the potential functions are no longer sines and cosines.

                                                     
2 For example, the identity: 1/12 = 8∑[π(2n-1)]-4  has been used.
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1.4 Circular Cylindrical Tank
The circular cylindrical tank is used in many applications because its shape can be
packaged neatly into a missile or spacecraft. Some sample results are presented  below.
More complete sloshing characteristics can be obtained from SLOSH code.

Potential and Eigenvalues
The derivation of the sloshing velocity potential for a cylindrical tank follows that given
in Sections 1.2 and 1.3 [BAUER, 1964]. The main difference is that the sines and cosines
used there are replaced by Bessel functions J1(r) of the first kind, since these are the
relevant solutions of Eq. (1.2) in cylindrical coordinates. Typical eigensolutions and
eigenvalues are:
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(1.40)

where r and θ are the radial and angular coordinates, a is the tank radius, and λmn is a
root of the eigenvalue equation dJ1(λr/a)/dr = 0 for r  = a.

Antisymmetric modes
When m = 1 in Eq. (1.40), the potential varies in the angular coordinate as cosθ, so that
the wave is “up” over half the circumference and “down” over the other half, similar to
the waves shown previously in Figure 1.4. When m > 1, the wave shape has several
“ups” and “downs” around the circumference. But only the m =1 modes create a net
force or torque on the tank, and they are the modes created by lateral or pitching motions
of the tank. The m = 1 modes are therefore the main ones of interest. The values of λmn
for m =1 are denoted by ξn. Numerical values of ξn are:

ξ1 = 1.841 ξ2 = 5.331         ξ3 = 8.536. . . ξn+1 → ξn + π         (1.41)
The shape of an antisymmetric free surface wave is proportional to J1(ξnr/a), and for n =
1, it is similar to the fundamental sine wave shown in Figure 1.4. For n > 1, the shape
resembles a corresponding higher order sine wave but the peaks and valleys are more and
more concentrated near the tank wall as n increases.

Forces and torques
The forces and torques for various tank
excitations can be computed from the velocity
potential just as for the rectangular tank discussed
above. But they are more easily computed by an
equivalent mechanical model, and thus will be
discussed in Chapter 3.

1.5 Sector-Annular Cylindrical Tank
The most general kind of cylindrical tank is a
sector of an annular tank; all the other kinds of
cylindrical tanks – including the right cylinder
discussed in Section 1.4 – are special cases of it
[BAUER, 1964]. Figure 1.6 shows a cross section

πα2

θ

r

b
a

Figure 1.6. Annular sector tank cross
section
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through this general tank shape. The z or axial dimension is directed out of the paper.
The width of the sector is specified by an angular fraction α of a complete circle. The
radius of the annulus is given by b and the radius of the tank is given by a. The
coordinate system is cylindrical, with coordinates r,θ,z.

The eigensolutions of Eq. (1.2) for this tank geometry again involve Bessel
functions [BAUER, 1964]. Since the region of interest is not a complete circle, Bessel
functions of fractional orders are needed, and since the liquid region may not extend all
the way to r = 0 Bessel functions Y(r) of the second kind are also needed to satisfy the
boundary conditions at r = b and r = a. The algebra is complicated, but the velocity
potential eigensolutions are given by:
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The χ function in Eq. (1.41a) is defined in terms of Bessel functions as:
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where the prime indicates a differentiation with respect to r. The eigenvalues λmn are the
roots of the equation:

( ) ( ) ( ) ( ) 0YJYJ 2222 =λ′λ′−λ′λ′ αααα mmmm abab (1.41c)

which arises from the simultaneous satisfaction of ∂φ/dr at r = b and r = a. The natural
frequencies are:
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For a quarter sector tank (α = 0.5, b = 0), the
first few roots are: λ00 = 3.832, λ01 = 7.016,
λ02 = 10.173, λ10 = 3.054, λ11 = 6.706, and
λ12 = 9.969.

Slosh modes
For a sector tank (α < 1, b = 0 in Figure
1.6), slosh modes can be excited by lateral,
pitching, and roll motions of the tank. As
shown schematically in Figure 1.7, there are
two general kinds of important modes, one
kind of which has up and down motions
aligned with the radius, and the other of
which has up and down motions in the
circumferential direction. The mode that has
the lowest natural frequency depends upon
whether the radial or the circumferential
extent of the tank is the greater.

For an annular tank (i.e., α = 1, b > 0), the antisymmetric modes resemble the
antisymmetric mode in a cylindrical tank with the middle part of the wave near the tank
axis missing. These modes can be excited by tank translation or pitching, and they create

circumferential radial

Figure 1.7.  Slosh modes for a quarter-sector
cylindrical tank
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a net force or torque on the tank. Since an annular tank is axisymmetric, the details of the
sloshing can be computed by the SLOSH code.

Forces and torques
The analytical expressions for the forces and torques are quite complicated and are not
given here. For a sector tank, a
finite element computer code can be
used to compute them, as is
discussed later in the Appendix to
this Chapter. For an annular tank,
the SLOSH code can be used to
derive the parameters of an
equivalent mechanical model.

1.6 Horizontal Cylindrical Tank
Gasoline tanker trucks and some
missiles use tanks that are
essentially horizontal cylinders. As
shown in Figure 1.8, sloshing
modes can be created along the long
axis of the cylinder or along the
transverse axis. The lowest natural frequency corresponds to the mode directed along the
longest axis (unless the depth h is very small, in which case transverse modes can have
the lowest frequency even if L > 2a).

An important point to note is that when L/2a >> 1 the longitudinal slosh modes,
which are standing waves, are susceptible to a transformation to traveling waves similar
to hydraulic jumps or bores, because standing waves are unstable for such a long,
shallow geometry. (Note that this instability is not a nonlinear phenomenon; the
characteristics of the traveling waves can in fact be computed accurately by a linear
analysis.) To a good approximation, the speed of the traveling wave is such that the
travel time of the wave front across
the tank length and back is the
same as the period of the standing
wave. However, the forces exerted
on the tank ends are not harmonic
in time, but are impulsive, rising to
a large value when the wave strikes
the wall and then decreasing nearly
to zero after the wave front is
reflected.  The shape of a
horizontal cylinder does not fit
neatly into any standard coordinate
system, so the potential cannot be
derived by the separation of
variables method used in the
previous analyses. Instead, an
energy minimization principle and
the calculus of variations have been
used to derive some limited results

L

2a
h

transverse

longitudinal

Figure 1.8.  Schematic of a horizontal cylinder
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for the transverse slosh modes [BUDIANSKY, 1960; MCCARTHY AND STEPHENS, 1960].

Natural frequencies
Figure 1.9 shows the nondimensional
natural frequency of the three lowest
frequency transverse modes, and Figure
1.10 shows the frequencies for the
longitudinal modes, as a function of the
liquid depth ratio, h/2a. (The
dimensional frequency ωn in the plots has
units of rad/sec.) The transverse mode
frequencies were calculated from the
theory described above. The longitudinal
mode frequencies, however, are simply
curves faired through experimental data,
since there are no theoretical results
available for these modes.

Approximate methods
If the liquid depth is not too shallow or
too full, the slosh characteristics can be computed by an approximate procedure. The
horizontal cylindrical tank is replaced by a rectangular tank that has the same length 2br
= L as the cylinder, a width 2ar equal to the width of the actual free surface, and a liquid
depth 2hr chosen such that the liquid volume of the rectangular tank is the same as the
cylindrical tank. For example, for a half-full cylindrical tank, the rectangular tank values
are ar = a and 2hr = πa/4. From the results given in Section 1.3 by Eq. (1.20a), with these
substitutions, the natural frequency parameter for the first transverse mode is predicted to
be:

( )[ ]ω π π1
2 0 5

16 13a g == =tanh .
.

(1.42)

This value is only slightly different from the value of 1.2 shown in Figure 1.9.

Forces and torques
The forces and torques can be computed
from equivalent mechanical models.

1.7 Spherical Tank
Because of their high volume-to weight
ratio, spherical tanks are often used in
satellites and sometimes in launch
vehicles.

Natural frequencies
Figure 1.11 shows the predicted natural
frequency for the first two antisymmetric
modes, where Ro is the sphere radius and
h is the liquid depth, measured from the
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bottom of the tank. The initial 1960’s era analytical predictions for spherical tanks were
made only for certain fill levels, as a result of the need to use numerical methods and the
limitations of 1960’s computers [BUDIANSKY, 1960; RILEY AND TREMBATH, 1961 EHRLICH,
ET AL, 1961; LAWRENCE, ET AL, 1958; STOFAN AND ARMSTEAD, 1962; CHU, 1964; RATTAYA,
1965]. The results shown in Figure
1.11 are, however, based on the
SLOSH code which can predict the
slosh characteristics for a spherical
tank regardless of fill level.

The natural frequencies become
large for high fill levels, because the
free surface diameter becomes small.
For low fill levels, the free surface
diameter also becomes small, which
should increase ωn, but the small depth
tends to decrease ωn [see Eq. (1.19a)].
The result is that the natural frequency asymptotes to a non-zero value as the tank fill
level approaches zero.

Forces and torques
The SLOSH code can be used to compute the mechanical model parameters from which
the forces and torques can be computed. It should be noted that an angular oscillation of
a spherical tank does not excite sloshing of an ideal liquid, because the tank motion is
tangential to the tank wall-liquid interface so the tank merely “slides” around the liquid.

1.8 Spheroidal Tank
Spheroidal (ellipsoidal) tanks are also commonly used in spacecraft. They can either be
oblate, in which the short axis is the
axis of symmetry, or prolate, in which
the longer axis is the axis of symmetry.
Figure 1.12 shows the geometry of an
oblate spheroidal tank. The cross-
section of the tank looking down along
the vertical axis is a circle. There are
two other ways a spheroid can be
oriented with respect to gravity; these
other configurations are not
axisymmetric and will not be considered
here

Natural frequencies
The slosh natural frequencies for a
spheroidal tank are plotted in Figure
1.13, for an oblate tank shape Rvert =
R0/2 (roughly the tank shape shown in
Figure 1.12) and for a prolate shape
Rvert = 2R0 [RATTAYA, 1965, BAUER AND
EIDEL, 1989]. The previous results for a
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Figure 1.12.  Schematic of a spheroidal tank
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spherical tank are also repeated for comparison. Roughly the same trends with liquid
depth are apparent as was noted for a spherical tank. Furthermore, the natural
frequencies for spheres and spheroids are all nearly equal when the tanks are over half
full. The SLOSH code can be used to compute any specific case.

Forces and torques - spheroids
The forces and torques exerted on a spheroidal tank by sloshing liquid can best be
computed by an equivalent mechanical model. The SLOSH code can be used to derive
the appropriate model parameters.

1.9 Toroidal Tank
Toroidal tanks have been proposed for some launch vehicles and spacecraft because they
can be fitted around engines or other tanks. Toroidal tanks are also used as “suppression
pools” in some boiling-water nuclear reactors to condense the steam released in a
postulated loss of coolant accident. Initially, only empirical data or approximate analyses
were available for toroidal tanks [MCCARTY, LEONARD, AND WALTON, 1960; SUMNER,
1963]. Modern computational methods such as the SLOSH code allow the sloshing
characteristics for toroidal tanks to be predicted accurately.

Natural frequencies
Figure 1.14 shows the configuration of a
toroidal tank and the definition of the two
radii Ro and Ri that describe its geometry.
The figure also illustrates schematically
the form of the two lowest frequency slosh
modes. For the lowest frequency mode,
the liquid in half the tank (on the right in
Figure 1.14) moves upward and the liquid
in the opposite half moves downward
alternately. For the second lowest
frequency mode, the liquid motion is
similar in both halves of the tank. Both of
these modes vary as cosθ around the tank
circumference and therefore produce net
forces and torques. For some radius ratios,
the second mode in fact causes the larger
forces. There is also a tendency for the
two modes to interact.

There are other modes when the tank is oriented on its side such that the Ro axis is
vertical. These modes also produce net forces and torques. The tank is not axisymmetric
for this configuration and is generally not used in applications. For that reason, the
modes are not discussed here; results for specific designs are given in MCCARTY,
LEONARD, AND WALTON [1960].

The nondimensional natural frequencies of the two modes illustrated in Figure
1.14 are shown in Figure 1.15 as a function of the liquid depth ratio h/2Ri. In general, the
natural frequencies decrease when the liquid depth decreases, and an increase in the
major radius Ro, for a constant minor radius Ri, also causes a decrease in the natural
frequencies.

Ro

iR

Figure 1.14.  Illustration of first and second
sloshing modes of a toroidal tank
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Approximate methods
To compute the slosh characteristics, a
toroidal tank can be approximated as an
annular cylindrical tank, using the
results described earlier. The inner and
outer radii of the annular tank are
chosen to be the radii to the inner and
outer edges of the free surface, and the
liquid depth is chosen to duplicate the
actual liquid volume. The computer
program SLOSH is capable of making
exact computations for a toroidal tank
so there is no need to use this
approximate method.

Forces and torques
The forces and torques exerted on a
toroidal tank by sloshing liquid can best
be computed by an equivalent
mechanical model. The SLOSH code
can be used to derive the appropriate
model parameters.

1.10 Some Practical Implications
Several methods have been developed to minimize the dynamical effects of liquid
sloshing in space vehicles. Baffles of various configurations have been devised to
increase the natural viscous damping and decrease the magnitude of the slosh forces and
torques; these are discussed in Chapter 2. If a shift in the range of the sloshing
frequencies is desired, baffles are relatively ineffective and a better method is to divide
the tank into subtanks or compartments, although it should be noted that for a cylindrical
tank, compartmentation into sectors raises the fundamental slosh frequency and lowers
the second frequency, so the two modes become less separated in frequency. Radial
compartmentation is moreover not as effective as ring baffles in reducing the amplitude
of the slosh forces and torques.

1.11 Vertical Sloshing3

Propellant tanks are subjected to vibrations along the thrust or g-vector in some
applications, rather than transverse to it as shown in Figure 1.1. The resulting sloshing is
called vertical sloshing and is due to a parametric instability since waves are not excited
directly by vibration normal to the free surface.

If the excitation acceleration is large enough to exceed the thrust acceleration, the surface will throw
off drops and sprays, and the drops as they fall back and impact the free surface can also set up sloshing
by a complicated interaction [YARYMOVYCH, 1959; KANA, 1966]. Furthermore, small bubbles can
become entrained in the bulk of the liquid, and the vertical vibration can tend to make the bubbles
coalesce into one or more large bubbles; the large bubbles lower the effective speed of sound in the

                                                     
3 This section is a very brief summary of Chapter 8 Vertical Excitation of Propellant Tanks of SP-106; the

original author was FRANKLIN T. DODGE of SwRI.
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liquid to the point that extremely large acoustic or resonant motions of the liquid occur [BAIRD, 1963;
KANA AND DODGE, 1966].

Vertical excitation is equivalent to a time-varying axial thrust acceleration, so Eq. (1.5),
which was written for a steady axial acceleration, is replaced by.

( )∂φ
∂

ω ω δ
z

g X to+ − =2 0cos (1.43)

where Xo is the amplitude of the vertical vibration and ω its frequency. Now, as before,
the velocity potential is assumed to be written as a series of the normal slosh modes with
the integration constants denoted by Am(t). Proceeding just as before, it is found that the
integration constants must be chosen to satisfy the following differential equation with
non-constant coefficients:

( )d A
dt

h g X t Am
m o m

2

2
2 0+ − =ξ ω ωcos (1.44)

where ξm(h) depends on the tank shape. Equation (1.44) is a form of Mathieu’s equation
that has stable (Am = 0) or unstable solutions (Am > 0), depending on the values of Xo and
ω. These solutions are computed by assuming a harmonic series for Am, starting with a
frequency of ω/2 and continuing with frequency increases of ω/2 [DODGE, ET AL, 1965;
MILES, 1984; POZRIKIDIS AND YON, 1998]. The solution shows that slosh is most easily
created when the excitation frequency is close to twice the natural frequency of the
fundamental axisymmetric mode; this is the 1/2-subharmonic response. The amplitude of
the mode depends on the damping, and there is no motion unless Xo is sufficiently large
[DODGE, ET AL, 1965]. The solution also shows that sloshing can be created when the
excitation is near the natural frequency (the harmonic response), or near 2/3 the natural
frequency (the 3/2 superharmonic response), or near 1/2 the natural frequency (the 2-
superharmonic), and so on, but the excitation amplitude for a real liquid has to be quite
large to create a noticeable slosh amplitude for these modes because of the viscous
damping.

1.12 Concluding Remarks
There is a great deal of experimental and theoretical information for lateral sloshing in
tanks of many different shapes. This chapter has emphasized theoretical information. The
corresponding experimental results generally validate the theory so long as the wave
amplitude is not too large. This restriction on “not too large” implies that the frequency
of the tank excitation does not coincide exactly with one of the natural frequencies of the
sloshing. When the excitation frequency does coincide with a natural frequency, the
wave amplitude is set either by damping (which is discussed in Chapter 2) or by non-
linear effects (which are discussed in Chapter 5). For practical purposes, the linear
theory can still be used even for resonance conditions if the damping is not too small.
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Appendix Linear Sloshing Analysis by Finite Element Structural
Codes

G. C. EVERSTINE has shown in “Structural Analogies for Scalar Field Problems” (Int. J.
Numerical Methods in Engrg., 17, March 1981, pp. 471-476) that the equations of
elasticity solved by conventional finite element structural codes can be adapted to other
classical problems of mathematical physics, including sloshing, by a suitable choice of
the elastic constants. The main results of this paper are summarized briefly here.

The x-component of the equations of elasticity can be written in the following
form:
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where u, v, w are the displacements in the x, y, z coordinate directions, λ and m are the
Lamé elastic constants, Fx is the x-component of the body force per unit volume, ρ is the
mass density, and t is the time. On the other hand, the governing equation for the velocity
potential Φ of sloshing is:
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A finite element code structural code can be made to solve Eq. (A.2) by: (1) identifying u
with Φ, (2) suppressing the v and w displacements, (3) artificially making λ equal to −µ,
and (4) setting Fx and ρ equal to zero. (In fact, this choice for λ makes the elastic
modulus E and the Poisson’s ratio ν infinitely large. However, all that needs to be
accomplished is to make E and ν very large.)

The boundary conditions must also be chosen by analogy to the sloshing boundary
conditions. A generalized boundary condition such as:
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can be applied in a structural problem. Since ∂u/∂n is equal to T/µ, where Τ is the force
per unit area acting on a surface element, an analogous force must be applied to each
surface element of the sloshing problem. For example, at a stationary wall of the tank
where ∂Φ/∂n = 0, it is necessary to set T = 0, which implies that a1 = 0, and a2 = a3 = a4
= a5 = 0. At the free surface, the boundary condition for the potential is:

1 0
2

2g t n
∂
∂

∂Φ
∂

Φ + = (A.4)

which means that a1 = 1, a2 = a3 = a5 = 0, and a4 = 1/g. This requirement can be met by
applying a fictitious mass to each free surface element, whose magnitude is µ/g.

All the other kinds of sloshing boundary conditions can also be simulated in a
finite element structural code by suitable choices for the a parameters of Eq. (A.3) and
by picking the surface force correspondingly.
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This chapter is a revision of Chapter 4 of the same title of SP-106; the original authors were SANDOR SILVERMAN and
H. NORMAN ABRAMSON.

2.1 Introduction
The term damping describes the fact that energy is always dissipated by the sloshing of a
real liquid. The energy dissipation occurs at the walls and free surface as a result of
viscous boundary layers and in the liquid interior as a result of viscous stresses. For
small tanks, the boundary layer dissipation dominates, while for large tanks, the
dissipation in the liquid interior may be the larger contribution.

 For free oscillations of a liquid in a stationary tank, there is no energy input and
the amplitude of successive slosh oscillations decreases because of energy dissipation.
The decrease is characterized by the logarithmic decrement ∆, defined as:

∆ =






ln peak amplitude of oscillation

peak amplitude of oscillation one cycle later
(2.1)

It is also common to characterize the damping either by the damping ratio γ, which is
defined by the relation γ = ∆/2π, or by the percentage of critical damping (critical
damping is defined as γ = 1), which is 100 times γ. For a linear system, the damping ratio
can be computed as the fractional part of the mechanical energy E dissipated into heat
over one cycle of the oscillation:

E
dtdE

ω
=γ

2
(2.2)

where ω is the oscillation frequency and dE/dt is the time average of the energy
dissipation rate. Equation (2.1) is a useful way to interpret experiments, and Eq. (2.2) is a
useful way to compute the damping from fluid dynamics analyses.

When damping is included, the analytical models described in Chapter 1 would no
longer predict that the wave amplitude and forces and torques are indefinitely large when
the forcing frequency Ω is near the resonance frequency ωn. To include the damping, the
usual procedure is to determine the damping by a separate analysis or test and insert it in
the inviscid relations by analogy to a linear vibrating system, instead of re-doing the fluid
dynamics analysis for a viscous liquid,. With this procedure, the inviscid force prediction
for a rectangular tank, for example, which is given by Eq. (1.28), is:
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where γn is the damping ratio of the nth mode. The real part of the expression is the actual
force. The force is now not infinitely large when Ω = ωn,.

Slosh damping experiments
Slosh damping is generally determined experimentally by the use of scale model tanks
(although modern free-surface CFD codes are also capable of computing damping).
Several different experiment methods can be used, as described below.
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Wave amplitude decay.  For this method, the tank is oscillated at the resonant frequency
until steady state is reached and then the oscillation is stopped quickly. The rate of decay
of the free surface displacement at some convenient location is monitored. The
logarithmic decay of successive wave heights is calculated from Eq. (2.1). This method
can only be used for the fundamental slosh mode, because other modes usually decay
faster than the fundamental and the
fundamental mode thereafter
dominates the wave shape.

Slosh force amplitude response.  For
this method, the amplitude of the
force exerted on the tank is measured
by a load cell as a function of
excitation frequency Ω over a range
of frequencies around the modal
resonant frequency. Or, alternatively,
the wave amplitude can be measured.
The force or wave amplitude is
plotted against Ω as shown in Figure
2.1, and the half-power bandwidth
technique [SCANLAN AND ROSENBAUM,
1960]is used to compute the damping
by the relation:

γ
ωn

n
= 1

2
∆Ω (2.4)

where ∆Ω is the difference between the two excitation frequencies at which the force or
wave amplitude is equal to 1/√2 times the maximum amplitude.

Equation (2.4) holds strictly only for a linear oscillator composed of a mass, spring, and dashpot. The
slosh model, as shown in Chapter 3, contains a linear oscillator and an additional fixed mass that
translates with the tank. The force due to the fixed mass causes the force to be slightly too large with
respect to a linear oscillator for frequencies Ω > ωn compared to the force for Ω < ωn. The error is
negligible if γ < 0.1 or so, which encompasses nearly all the cases of interest.

Anchor force decay.  This method is a variation of the wave amplitude decay method. The
tank is attached to a load cell and the decay of the force is measured after the tank
motion is stopped quickly.

Cautions.  The relationship among the damping factors calculated by the various
experimental methods is not easily determined unless the wave motion is linear, in which
case they all give essentially the same answer. Caution is especially required when
measuring the slosh damping in a tank that is not axisymmetric, because the apparent
damping may then depend on the direction in which the tank is excited, the direction in
which the force is measured, and the technique used to measure the damping.

2.2 Viscous Damping for Tanks of Various Shapes
Sloshing in a tank that does not contain an anti-slosh device is damped by viscous
stresses. Although in principle the stresses can be determined theoretically, most of the
available results have been obtained experimentally. The various experimental results are
discussed below. All the damping correlation pertain to the fundamental slosh mode.

Fmax

0.707Fmax

Ωωn

∆Ω

Figure 2.1.  Typical force amplitude response curve
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Since the damping is due solely to viscous effects (at least when surface tension
effects are small), dimensionless analysis shows that it is a function only of tank shape,
fill level, and a dimensionless parameter Re analogous to an inverse Reynolds Number:

nL
Re

gL
Re

ω
ν=ν= 2231 or              (2.5)

where ν is the kinematic viscosity of the liquid and L is a characteristic dimension of the
tank such as the diameter. The first form of Re given in Eq. (2.5) is the one used in most
correlations; it assumes that the characteristic slosh velocity is (gL)0.5. Since the
acceleration g appears in the denominator of Re1, correlations that employ it are not
useful for low gravity conditions when g ≈ 0. The second form of Re, which uses a
characteristic velocity of Lωn, is applicable to high and low gravity conditions and is thus
used for the low-gravity slosh damping correlations discussed in Chapter 4.

Many of the available damping correlations were derived from scale-model tests.
Tests of small tanks exactly duplicate the damping coefficients of large tanks if the
model scale and full scales values of Re1 are the same. Generally, however, the model
scale Re1 is larger than the full scale Re1 because of the smaller value of the model L.
Even then, if both the laboratory and full-scale Re1 are sufficiently small, the damping
values will be comparable. Otherwise, the relative contributions of boundary layer and
bulk liquid viscous dissipation will be different. For that reason, there may be some
errors when the scale-model-derived correlations are extrapolated to full-scale.

The SLOSH computer code incorporates the damping correlations described
below as a function of tank shape, fill level, and liquid properties.

Circular cylindrical tank
Circular cylindrical tanks are widely used in launch vehicles and spacecraft, so they have
been the subject of many studies. There are some small differences between the
correlations from these studies as the result of the different methods used to measure
damping. Two of the more complete investigations are summarized here.

MIKISHEV AND DOROZHKIN [1961] proposed the following correlation from their
tests:

( ) ( ) 
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84.1sinh
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The tank radius R is used as the characteristic dimension in the definition of the Re1
parameter, and h is the liquid depth. For h > 2R, the correlation reduces to:

1790 Re.=γ (2.6b)

A similarly extensive but independent study [STEPHENS, ET AL, 1962] found a slightly
different correlation:
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When the liquid depth is large, Eq. (2.7a) reduces to:

1830 Re.=γ (2.7b)

The actual numerical differences between Eqs. (2.6) and (2.7) are quite small.
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Linear sloshing limitation.  By testing at
various slosh amplitudes, these
investigators found that the damping is
independent of the wave amplitude –
as the correlations assume – so long as
the slosh amplitude at the wall is no
greater than about 0.1R.

Draining effects.  When liquid is draining
from a tank, the slosh damping
increases slightly [LINDHOLM, ET AL,
1962].

Cylindrical tank - spherical dome
For a cylindrical tank with a spherical
bottom, the damping increases
significantly when the liquid level is in or slightly above the dome [MIKISHEV AND
DOROZHKIN, 1961]. The damping can be computed by applying the correction factor
shown in Figure 2.2 to the damping correlation Eq. (2.6a):
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Spherical tank
Slosh damping for spherical tanks has been investigated experimentally by SUMNER AND
STOFAN [1963]; MIKISHEV AND DOROZHKIN [1961]; and STOFAN AND ARMSTEAD [1962]. The
recommended correlations depend on the liquid depth and are given by:

( ) RhR.hRRe. ≤≤=γ 10for           790 1 (2.9a)

( )[ ] ( )[ ] RhRhRhRe. ≥−−=γ for        21.4620.46+1790 1 (2.9b)

There is somewhat more discrepancy between these studies than for the cylindrical tank
studies, primarily because of the different methods used to measure the damping.

Figure 2.3 shows a plot of
Eqs. (2.9). The damping is a
minimum for tanks that are half full.
The damping is very large for
nearly empty and nearly full tanks,
since the mass of liquid that
participates in the wave motion
(which is always less than the liquid
mass) decreases more rapidly for
nearly empty or full tanks than the
viscous energy dissipation does;
hence, the damping coefficient
[which from Eq. (2.2) is
proportional to the ratio of the
energy dissipation rate to the kinetic
energy of the sloshing mass]
becomes large.
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Figure 2.2.  Viscous damping correction coefficient
for a cylindrical tank with a spherical dome
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Figure 2.3.  Viscous damping for a spherical tank
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Oblate spheroidal tank
Slosh damping for oblate spheroidal
tanks has also been measured [STEPHENS,
ET AL, 1961]. The results are shown in
Figure 2.4 for a tank having a ratio of
horizontal diameter to vertical diameter
equal to 1.33. The plot shows the ratio
for the spheroid damping to the damping
of a sphere; thus, the plot and Eqs. (2.9)
allow the damping to be computed as a
function of tank size and fill level.

Horizontal toroidal tanks
Toroidal tanks have a shape advantage
for some applications. A limited amount
of damping results are available for a
scale-model size horizontal toroidal tank
for both the 1st and 2nd slosh modes
[SUMNER, 1963]. Figure 1.14 of Chapter
1 illustrates the two slosh modes of
interest and defines the minor radius r
(the damping tends to be independent of
the major radius of the tank). Figure 2.5
shows the damping correlations. In the
tests, the minor radius was held constant
at 6.35 cm, and the ratio of the major to
minor radius was varied from about 1.5
to about 3.5. The liquid was acetylene
tetrabromide (ν = 0.033 cm2/sec).
Damping for other liquids can be scaled
from these results using the Re1
parameter defined by Eq. (2.5).

2.3 Slosh Damping by Ring Baffles
Damping caused solely by viscous effects is quite small for even a moderately large tank,
with γ generally being  equal to 0.01 or less when the tank diameter is 1 meter or so. A
missile or spacecraft’s attitude control system usually requires γ to be considerably larger
than 0.01 for stable flight. Consequently, some method of increasing the damping is
required. For axisymmetric tanks, a common method is to attach a series of ring baffles
to the tank walls. The baffles provide a substantial degree of damping when the free
surface is near one of the baffles. The spacing between the baffles is chosen so that the
minimum damping exceeds the damping requirements, regardless of fill level.

A ring baffle has the shape of a flat ring, with the outer edge of the ring attached
to the tank wall (sometimes with a small gap between the ring and the wall). The plane of
the ring may be perpendicular to the tank axis, which is the common arrangement, or it
may be sloped up or down, and the inner edge of the ring may have a lip of some sort for
structural reasons, although anything that reduces the sharpness of the inner edge
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generally reduces the effectiveness of the baffle [COLE AND GAMBUCCI, 1961]. Perforating
the baffles can be used to save weight, and both an increase in damping and saving in
weight can be obtained by making the baffle flexible (discussed below).

Ring baffle damping in a cylindrical tank - theory
The damping provided by a ring baffle is analyzed by analogy to the drag that a flat plate
exerts on an oscillatory flow [MILES,
1958; BAUER, 1962]. As shown in Figure
2.6, the liquid is assumed to oscillate in
the fundamental slosh mode, and the
direction of the flow is assumed to be
normal to the ring. Other assumptions
include: (1) the linearized potential flow
theory described in Chapter 1 is
sufficiently accurate to predict the flow
and slosh frequency; and (2) the local
flow in the vicinity of the ring is not
affected by the free surface or the tank
bottom These assumptions require that
the baffle occupy only a small
percentage of the tank cross section and
not be too near the surface of the bottom. The damping is determined from Eq. (2.2), by
computing the mechanical energy and rate of energy dissipation.

Mechanical energy.  The total slosh energy needed for Eq. (2.2) is the sum of the
instantaneous kinetic and potential energies, but it is also equal to the maximum value of
the kinetic energy. The kinetic energy can be computed from the velocity potentials
given in Chapter 1 or from the equivalent mechanical model of sloshing (discussed in
Chapter 3) which is the method used here. As shown in Chapter 3, a typical slosh
mechanical model is a mass-spring oscillator, so the maximum kinetic energy is:

E m Xs= 1
2

2 2ω max (2.10a)

where ms is the mass of the oscillator and Xmax is its peak oscillatory amplitude. Xmax is
linearly related to the slosh wave amplitude, δ, because when the free surface translates
upward, the oscillator mass translates horizontally in proportion; thus, Xmax = Γδ, where Γ
is a number that depends on the tank shape. Equation (2.10a) can therefore be written as:

222
2
1 δωΓ= smE (2.10b)

Energy dissipation.  For a baffle oriented normal to the flow, energy is dissipated mostly by
pressure drag. The instantaneous drag force is equal to one-half the product of (a) liquid
density ρ, (b) square of the velocity at the plate location, (c) drag coefficient CD, and (d)
total area of the plate Ab. The instantaneous energy dissipation rate is the product of the
drag force and the velocity. The instantaneous energy dissipation rate then has to be time
averaged over one slosh cycle and spatially averaged around the tank circumference for
use in Eq. (2.2). The averaging gives:
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Figure 2.6.  Schematic of ring baffle
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Here, δz is the amplitude of the liquid motion at the baffle location where, as shown in
Figure 2.6, the liquid velocity is ωδz sinω t. δz is related to the wave height δ by a function
that depends on depth below the surface; this function can be derived from the velocity
potentials discussed in Chapter 1 and is represented here symbolically as δz = fdδ. The
factor (4/3π) in Eq. (2.11) is the result of time averaging the absolute value of (sinω t)3.
The term Cθ is similarly the spatial average of the absolute value of the cube of the slosh
wave height around the baffle circumference; if the tank is a cylinder, the circumferential
variation is cosθ, and if the baffle extends all the way around the tank circumference, Cθ

= (4/3π). Otherwise Cθ has some other numerical value.
General damping coefficient.  Putting Eqs. (2.10b) and (2.11) into Eq. (2.2) gives the

general relation for the damping coefficient γ of a plate that dissipates energy by drag:
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2Γ
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When CD is constant (independent of slosh frequency or amplitude), it can be seen that
the damping coefficient is proportional to the slosh wave amplitude. Generally, however,
CD is not constant but depends on the characteristics of the oscillating flow.

Drag coefficient.  The drag coefficient for a plate in an oscillating liquid flow, which is
needed for Eq. (2.12), is correlated by the expression [KEULEGAN AND CARPENTER, 1956]:

C UT w UT wD = <15 20        when   (2.13)

where w is the plate width, U = ωδfd is the amplitude of the oscillating velocity, and T =
2π/ω is the period of the oscillation4. Equation (2.13) was developed from tests of a plate
in an oscillating flow for which U did not vary along the length of the plate. For a ring
baffle in a tank, however, U varies around the circumference; the circumferential
variation is accounted for by basing CD on the reasonable assumption that the effective
velocity is half the maximum velocity of ωδfd. The area Ab blocked by the baffle is
characterized by C1A where A is the tank cross-sectional area and C1 is the ratio of the
baffle area to the tank cross-sectional area.

Ring baffle γγγγ.  When all these relations are put in Eq. (2.12), the damping coefficient for a
ring baffle in a cylindrical case is predicted to be:
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For the specific case when the liquid depth h is considerably greater than the tank radius
(h/R > 2), the following values can be used in Eq. (2.14):
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Putting these relations into Eq. (2.14) and combining the terms gives the result that:

( ) ( )  tanklcylindrica             83.2 2123
1

6.4 RCe Rhs δ=γ − (2.16)

The exponential term in Eq. (2.16) implies that γ decreases with the depth hs that the
baffle is submerged below the free surface. In contrast to viscous damping, the damping
                                                     
4 CD is constant and equal to 2 when the period parameter UT/w is greater than 100; for sloshing,

however, UT/w < 20 is the relevant value.
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provided by a ring baffle is nonlinear; that is, γ does depend on the amplitude of the
sloshing.

Figure 2.7 compares Eq. (2.16) to the results of damping measurements for a
cylindrical tank as a function of
submergence depth hs and wave
amplitude δ. The data were
obtained by a variety of methods
(force on the baffle, force to drive
the tank, amplitude of slosh wave,
decay of slosh wave, decay of tank
anchor force) indicated by the
different symbols. The scatter in
the data is primarily the result of
the different measurement
techniques. When the baffle is not
too near the liquid surface, the
theory compares reasonably well
to the test results over the range of
wave heights tested. When the
baffle is near the surface, theory
and test do not compare so well,
for reasons discussed below.

Ring baffle - near free-surface effects
When the submergence depth of the baffle is less than the slosh amplitude, the baffle is
uncovered during part of the slosh cycle and the damping is generally less than the
predictions of Eq. (2.16). Predicted and measured damping values for a baffle near the
liquid surface are shown in Figure 2.8, as a function of baffle submergence depth for a
specific tank oscillation amplitude and an oscillation frequency equal to the slosh
resonance. The plot shows that the measured damping for slightly submerged baffles is
greater than the theory predicts [computed by using the measured slosh amplitude in Eq.
(2.16)], while for baffles almost at
the liquid surface, the measured
damping is slightly less than the
prediction. This complicated
damping dependency on
submergence is caused partly by
the splashing of the slosh wave
(which increases the damping),
partly by the change in slosh
natural frequency when the liquid
surface intersects the baffle, and
partly by the uncovering of the
baffle during some or all of the
wave cycle. An approximate
correction for baffles near the free
surface is available [BAUER, 1962].
However, in most applications,
some minimum value of damping is

0.00 0.04 0.08 0.12 0.16 0.20 0.24
Wave amplitude / tank radius ratio, δ/R

0.00

0.02

0.04

0.06

0.08

D
am

pi
ng

 ra
tio

, γ

hs/R = 0.164
hs/R = 0.252
hs/R = 0.506

Figure 2.7.  Damping of a ring baffle in a cylindrical tank;
baffle area blockage = 23.5% [O’NEILL, 1960]
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required, and this minimum occurs when the baffle is relatively deeply submerged, so the
correction is not usually necessary.

Of more importance is the fact that a ring baffle is able to provide some damping
even when it is slightly above the free surface. Predicting this damping rigorously is a
complicated problem, but the damping can be estimated approximately by the following
simple procedure. When the baffle is above the free surface by a distance equal to or
greater than the slosh amplitude, the slosh wave does not intersect the baffle and there is
no damping. As the liquid level is dropped, the full baffle damping is approached. The
damping for baffles located above the free surface can thus be estimated by linearly
decreasing γ from the value predicted by Eq. (2.16) for hs = 0, to a value of γ = 0 when
the height above the free surface is, say, conservatively 0.8 times the slosh amplitude δ.

Ring baffle - design value of slosh amplitude
In most applications, the spacecraft stability analysis specifies the required minimum
value of damping as a function of tank fill level. A system of ring baffle must be
designed to meet the requirements. But the damping γ depends on the slosh amplitude δ
and δ depends on γ. The question is: What value of δ should be used to design the
baffles? The answer is a classical trade study in which various slosh amplitudes are
assumed, and a baffle width and a distribution of baffles along the tank axis are
computed to satisfy the damping requirements. The design having the minimum weight
(or some other criterion) is then chosen. Such a trade study invariably indicates that the
total weight of baffles decreases when the slosh amplitude increases. The problem thus
reduces to what is the largest slosh amplitude that can be assumed reasonably. Now, a
slosh wave starts to become noticeably nonlinear and splashes, rotates, etc., when the
amplitude exceeds about ten percent of the tank diameter. Consequently, the largest
feasible slosh amplitude that can be assumed reasonably is 0.2R (unless nonlinear effects
can be analyzed). With a value of δ = 0.2R, Eq. (2.16) reduces to:

( ) 23
1

6.427.1 Ce Rhs−=γ (2.16a)

This relation allows the baffle width (i.e., blockage ratio C1) and baffle spacing to
be chosen to meet the specified minimum damping requirement. Figure 2.9 shows such a
design schematically. The plot on the left of this figure shows the predicted damping as a
function of the free surface location. The baffle spacing includes an allowance for the
damping provided by a baffle
slightly above the free surface. As
can be seen, the minimum damping
occurs when the free surface is
slightly below (by 0.8δ) the nearest
baffle.

Ring baffles - effect on slosh
frequency

When the free surface is at or
slightly above a ring baffle, the
slosh resonant frequency is altered
from the “bare tank” value
[SILVEIRA, ET AL, 1961]. The
resonant frequency can be up to
15% higher than the bare tank value
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when the baffle intersects the surface (partly caused by the apparent reduction in the free
surface diameter), and up to 10% lower than the bare tank value when the free surface is
about one baffle width above the baffle. When the baffle is submerged by two or more
baffle widths, the resonant frequency is unaffected by the presence of the baffle. The
minimum damping generally occurs, however, when the baffle nearest the free surface is
submerged by more than one baffle width. The change in resonant frequency is small
enough for this condition that it is usually not of any consequence.

Ring baffle - spherical and spheroidal tanks
Ring baffles can also used for tank shapes other than cylinders, such as spheres. The
general theory [Eq. (2.14)] applies to any tank shape, so the damping can be predicted by
substituting a depth function fd and slosh mass that are specific to the tank shape. More
simply, a reasonable estimate can be obtained from the cylindrical tank result by using an
equivalent cylindrical-tank submergence depth hs such that the liquid volume above the
baffle is the same for the equivalent cylindrical tank as for the actual tank. Experimental
data for several kinds of tanks and baffle designs confirm this simple approximation
[STEPHENS, ET AL, 1961, ABRAMSON, ET AL, 1963, and SUMNER. 1964].

Ring baffle - effects of baffle flexibility
Ring baffles are commonly designed as elastic plates and they are relatively rigid under
the action of the slosh loads5. Rigid baffles may represent a significant percentage of the
tank weight. The damping-to-weight efficiency of the baffle system can be improved by
reducing the baffle weight, but to do so implies that the thickness of the baffle would be
reduced and the baffle would consequently be flexible. Thus, flexible baffles have been
evaluated by several investigators [SCHWIND, ET AL, 1968; STEPHENS, 1966; STEPHENS AND
SCHOLL, 1967; GARZA AND DODGE,
1967; BUGG, 1970].

The results of these studies are
summarized in Figure 2.10, in which
the measured damping of a flexible
baffle is compared to the measured
damping of a similar rigid baffle of the
same area. The comparisons are a
function of two parameters: the period
parameter P and the flexibility
parameter F. The period parameter
was introduced previously in the
discussion of rigid ring baffles; it is the
ratio of the amplitude of the liquid
motion to the baffle width, and is
defined for a cylindrical tank in which
the liquid depth is greater than the tank
radius by the following relation:
                                                     
5 The subject of slosh loads is discussed in NASA SP-8009, Propellant Slosh Loads. For a rigid ring

baffle, the amplitude of the oscillating pressure exerted on the baffle is given by:

( ) ( )[ ] Rh. seRrRcosw,rp 84122 12 −−−θδρω=θ

where as before ω is the slosh frequency and hs is the baffle submergence depth [GARZA, 1966].
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The flexibility parameter is proportional to the ratio of the elastic deflection of the baffle
to the baffle width, for a period parameter of unity. It is defined by the relation:
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where E is the elastic modulus of the baffle material and b is the baffle thickness. The
actual flexibility of a baffle may be somewhat less than predicted by Eq. (2.18) because
Eq. (2.18) ignores membrane tension and stiffness. However, it is apparent from Figure
2.10 that P and F are sufficient to correlate the relative damping of a variety of baffle
designs.

From the results shown in Figure 2.10, it is concluded that the damping from a
flexible baffle is never less than the damping of a rigid baffle. And as the baffle becomes
more flexible (F increases), the relative damping increases and reaches a maximum
which depends upon the value of the period parameter. Consequently, flexible baffles
can allow a substantial improvement in baffle efficiency to be obtained.

Flexible baffle materials include plastics such as mylar and thin gauge metals such
as aluminum and stainless steel. Other studies have investigated the use of flexible
baffles for cryogenic liquids [DODGE, 1970; BASS, 1972]. Although flexible baffles might
“stiffen” considerably at cryogenic temperatures, they are still light weight. Thus, the full
damping improvement indicated in Figure 2.10 might not be obtained for cryogenic
liquids. However, the baffle efficiency would still be improved because of the light
weight design. The structural design of baffles for cryogenic applications is discussed in
DODGE [1970].

Ring Baffles - effects of holes
The weight of a ring baffle can be reduced by perforating it with small holes. The
oscillating flow through the holes is an additional source of damping (which will be
discussed below in conjunction with tank partitions) but this increase is partially offset
by the decrease in the effective solid baffle area [ABRAMSON, ET AL, 1964]. The net effect
is that the damping for a slightly submerged ring baffle is decreased while for a deeper
submergence, the damping is about the same as for a non-perforated baffle.

2.4 Damping by Movable and Floating Baffle Devices
A large variety of devices that either float or are attached to the liquid free surface have
been evaluated for their slosh effectiveness

Floating lids, mats, and cans
Rigid lids that cover some fraction of the free surface and float up or down as the liquid
level changes have been found to be reasonably good dampers when the coverage is 85%
or more of the tank diameter [ABRAMSON AND RANSLEBEN, 1961]. Floating porous mats
that greatly increase viscous effects at the surface have also been evaluated [EULITZ,
1958]. Because lids and covers can “hang up” on the internal hardware of the tank, these
devices have not proved to be practical for spacecraft.

Arrays of light-weight cans have been proposed as a type of floating anti-slosh
device that would not be subject to hanging up on the tank structure. Tests have shown,
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however, that the damping is appreciable only when the cans are packed closely to
increase their drag, and the weight is somewhat more than an equivalent ring baffle
[ABRAMSON AND RANSLEBEN, 1960]. Floating cans have, however, been used in race car
fuel tanks.

Membranes and flexible diaphragms
Flexible diaphragms and positive expulsion devices that provide an impermeable barrier
between the liquid and the gas in a tank are employed in tanks when there is a need to
transfer liquid in a low gravity environment or when a high flow rate is desired without
pumps. The membrane or flexible metal diaphragm is attached around the periphery to
the tank wall. It is sized to be large enough to contain the initial liquid loading when it is
in the fully extended orientation and to expel nearly all the liquid when it is near the tank
bottom. As shown schematically in Figure 2.11, the constrained free surface at
intermediate fill levels is of a complex,
crinkled shape6. Because of the geometric
constraints, a flexible diaphragm is most
commonly (but not exclusively) a practical
design only for spherical or oblate spheroidal
tanks.

Diaphragms provide a substantial level
of slosh damping as a result of the
combination of viscoelastic flexing of the
diaphragm (primarily) and the increased
viscous effects at the liquid-diaphragm
interface (secondary) [STOFAN AND PAVLI,
1962; STOFAN AND SUMNER, 1963; DODGE AND
KANA, 1987]. A typical damping coefficient is
γ = 0.1. A diaphragm also increases the slosh
natural frequency because of the constraints
imposed on the free surface shape. The
effective mass of liquid participating in the
sloshing is slightly smaller than for a tank of the same shape and fill level without a
diaphragm [DODGE AND KANA, 1987]. Higher order slosh modes tend to be suppressed.

Since the damping depends primarily on the viscoelastic flexing of the diaphragm,
it should be predictable in principle by a finite element structural analysis. The main
difficulty is calculating the static interface shape, which is a calculus of variations
problem. It would also be necessary to predict the slosh natural frequency. When these
quantities are known, the damping coefficient can be computed from Eq. (2.2). But if a
full scale prototype tank is available, a better method of determining the damping is by
laboratory testing. Generally, subscale testing, while not impossible, is difficult because
of the conflicting simulation requirements imposed by liquid viscosity and diaphragm
viscoelasticity.

                                                     
6 The shape of the liquid-diaphragm surface is determined by several constraints. First, the area of the

surface must be equal to the area of the membrane. Second, the total potential energy of the system must
be minimized. The potential energy is composed of the gravitational potential energy of the liquid and the
strain energy of the bladder. Generally, the bladder strain energy is negligible compared to the
gravitational potential energy. This implies that the equilibrium configuration of the liquid volume is as
“low” in the tank as is possible considering the constraint that the liquid surface area (i.e., the membrane
area) is fixed.

liquid

membrane

attachment point

Figure 2.11.  Schematic of bladdered tank.
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As was mentioned above, diaphragms can be used to hold liquid in a desired
position over the tank exit for low gravity applications. For the Tracking and Data Relay
Satellite (TDRS), a diaphragm was even used to hold liquid against the top of the tank
(i.e., the tank was inverted compared to Figure 2.11) during periods of thrusting and high
gravity. The static equilibrium position of the liquid for this tank was asymmetrical, and
the liquid was located primarily on one side of the tank centerline, since this
configuration minimized the total static potential energy [DODGE AND KANA, 1987].

2.5 Damping by Non-Ring Baffles
Other types of baffles than rings are also used to damp sloshing. In some cases, the baffle
design is constrained by the internal structure of the tank, such that ring baffles are not
feasible. In other cases, such as for low-gravity applications, the baffle design may serve
a dual purpose of damping the slosh and ensuring that some minimum fraction of the
liquid is always positioned over
the tank outlet. Figure 2.12 shows
two such non-ring baffle
arrangements, a vane arrangement
on the left, and. a cruciform
arrangement on the right The
vanes are a typical low-gravity
design.

These kinds of baffle
designs provide less damping than
a ring baffle of the same total
area, as various tests have shown
[STEPHENS, ET AL, 1961; SILVEIRA,
ET AL, 1961; ABRAMSON, ET AL,
1963]. In the absence of test data
for a new design, the damping can
be estimated from the general ring
baffle theory by identifying the appropriate blocked area and depth function.

2.6 Damping by Perforated Bulkheads
Some missile tanks are divided into compartments by bulkheads or septums. Examples of
compartmentation include the X-33 vehicle, in which the cylindrical-like LOX and LH2
tanks are divided into quarter sectors by bulkheads aligned with the tank axis, and the X-
34 vehicle, in which the horizontal cylindrical-like LOX and RP tanks are divided into
several smaller cylindrical-like compartments by bulkheads aligned normal to the tank
axis. Compartmenting a tank increases the structural stiffness, shifts the slosh resonant
frequencies to a higher range, and diminishes the slosh forces. The weight of the
bulkheads is fairly large, so it is common practice to perforate them to reduce weight.

There is no simple answer to the question of how much of the area of the bulkhead
can be removed by the perforations or how big the holes can be and still make the tank
appear to be divided into isolated compartments with respect to the slosh dynamics. If
the only purpose of the bulkheads is to increase tank stiffness, the fractional area of holes
can be as large as desired consistent with the desired stiffness. But if the compartments
are also meant to change the slosh dynamics, a rule-of-thumb is that the total area of the
perforations cannot exceed 10% of the area; if the open area is a bigger percentage, the

A A

view A - A

B B

view B - B

Figure 2.12.  Schematics of typical vane and cruciform
type slosh baffles
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liquid tends to slosh back and forth between the compartments and the slosh natural
frequency tends to approach the value of an uncompartmented tank. In either case, holes
in the bulkheads increase the viscous slosh damping, sometimes to γ = 0.1 [ABRAMSON
AND GARZA, 1965]. This additional damping is caused by irreversible pressure losses
when the liquid flows back and forth through the holes. The magnitude of the additional
damping is best determined by experimentation. However, the relatively simple analysis
outlined below can be used to obtain a preliminary estimate of the damping.

The analysis is based on an application of Eq. (2.2). Consequently, both the energy
dissipation rate and the total energy of the sloshing must be computed. The energy
dissipation, which is due to the flow losses as the liquid oscillates back and forth through
the hole, is computed by analogy to the energy dissipated by the flow through an orifice
in a pipe. Thus, a proportionate fraction of the bulkhead area has to be assigned to each
hole, and this bulkhead area is assumed to the be analogous to the pipe cross sectional
area. The pressure loss across the hole (i.e., the fraction of the pressure drop that is not
recovered on the downstream side) is given by:
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where α is the irreversible loss coefficient [BLEVINS, 1984], Cc is the discharge
coefficient for the hole, Ahole is the area of the hole, Aplate is the area of the plate or
bulkhead associated with the hole, and U is the liquid velocity through the hole. Values
of α for turbulent flow for a circular hole are shown in Table 2.1 as a function of the area
ratio Ahole/Aplate. The discharge coefficient also depends on the area ratio and the shape of
the hole, but for this approximate analysis a value of Cc = 0.6 can be assumed.

The velocity U depends on the slosh wave height and frequency and the location
and depth of the hole relative to both the free surface and the wave nodal line. The
geometric factors are lumped together, just as for a ring baffle, into a function fd of the
depth and angular coordinate; the wave height and frequency are treated explicitly.
Hence, the velocity is given by the relation:

U f td= δ ω ωsin (2.20)

The energy dissipation rate of the flow through the hole is the product of the
pressure loss ∆Ploss and the volumetric liquid flow rate V back and forth through the hole.
There are several ways to estimate this oscillating liquid volume. For example, it could
be estimated as the product of the hole area and the amplitude of the liquid oscillation at
the hole location, which can be computed in terms of the wave amplitude and the depth
function fd. Another method is simply to base V on a fraction of the volume of the
sloshing mass of the equivalent mechanical model; the fraction is determined by the
location of the hole below the free surface (to account for the decrease in the oscillations
with depth) and the fraction of the bulkhead area open to the oscillating liquid. This
latter method is the one assumed here. Hence, the liquid volume that oscillates through

Table 2.1  Loss coefficient as a function of area ratio

Hole-to-Pipe Area Ratio
0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81

Loss
coefficient, α 0.93 0.89 0.82 0.74 0.63 0.53 0.38 0.22
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the hole is given by:
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The amplitude ωV of the oscillating volume flow rate is the product of V and the
oscillation frequency ω.

The instantaneous energy dissipation varies with time roughly as (sinωt)3, so the
time-average energy dissipation rate is:
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As before, the total energy of the motion is 0.5msloshω
2Γ2δ2. Thus, the damping

coefficient is given by:
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The ratio Ahole/Aplate is now interpreted as the fractional area of the plate that is
open. For this approximation, the damping estimate does not depend on the slosh
amplitude. Experiments show, nonetheless, that there is usually a small dependency on
both slosh amplitude and Re1 for most perforated anti-slosh devices [ABRAMSON AND
GARZA, 1965]. Alternative methods of computing dE/dt, such as the first method
mentioned above, might predict an amplitude dependence. However, Eq. (2.22) is
sufficient to estimate the gross magnitude of the damping provided by holes in a plate or
structure.
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MMMMECHANICAL ECHANICAL ECHANICAL ECHANICAL MMMMODELS OF ODELS OF ODELS OF ODELS OF SSSSLOSHINGLOSHINGLOSHINGLOSHING

This chapter is a revision of Chapter 6 of SP-106 entitled “Analytical Representation of Lateral Sloshing by
Equivalent Mechanical Models”; the original author was FRANKLIN T. DODGE.

3.1 Introduction
Lateral sloshing was described analytically and experimentally in the previous two
chapters. Sloshing can have a significant influence on the stability of a space vehicle
because the slosh forces and torques interact with the control system through a feedback
loop. For the purposes of incorporating the dynamic effects of sloshing in the spacecraft
control and stability analysis, it is convenient to replace the liquid conceptually by an
equivalent linear mechanical system. The equations of motion of oscillating point masses
and rigid bodies are included more easily in the analysis than are the equations of fluid
dynamics; even with super computers, coupling the equations of motion of a flexible
space vehicle to the equations of motion of a continuous liquid is too computationally
demanding for ordinary design analyses.

When liquid completely fills a capped container, theory shows that the liquid can
be replaced dynamically by an equivalent rigid body [ZHUKOVSKII, 1964]. But when the
liquid surface is free to move, the resultant sloshing has one or more natural frequencies,
so the equivalent mechanical model cannot be a rigid body. Theory shows, however, that
the dynamic effects can still be represented by a mechanical model but the model must
now contain some masses that are free to oscillate [OKHOTSIMSKII, 1960]. It is not
surprising that the dynamic effects of linear sloshing can be represented by another
linear dynamical system. It is perhaps surprising that the parameters of the mechanical
model depend only on the tank shape and the liquid properties, and not on the type of
excitation imposed on the tank – so long as the tank walls are rigid. (But it is usually
accurate enough to use the mechanical model even for tanks with flexible elastic walls.)

One of the main benefits of a mechanical model is that damping can be included
easily by adding linear viscous dashpots
to the model. Another advantage is that
the form of the model does not depend
on the tank shape or fill level.

3.2 Analytical Derivation of Model
Parameters

Figure 3.1 illustrates the kind of
mechanical models discussed in this
chapter. Most of the discussion will
pertain to the pendulum form of the
model for the reason that the natural
frequency of the pendulum (g/L)0.5

automatically adjusts to changes in the
axial acceleration g (or gravity level)
just as the liquid natural frequencies do,
whereas for the spring-mass model, the

L

Pendulum Model Spring-Mass Model

M
M

1

2
K

free surface

1

2
K

Figure 3.1. Mechanical models of sloshing
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value of the spring constant K must be altered whenever g changes. The transformation
between the pendulum model and the spring-mass model is straightforward. The spring-
mass is located at the same elevation as the pendulum mass (not at the pendulum hinge
elevation), the mass is attached to the tank walls through a spring having a spring
constant K = mg/L that gives the same natural frequency as the pendulum, and the
pendulum angular dashpot (which is not shown in Figure 3.1) is changed to a linear
dashpot.

Equations of motion for the mechanical model
The equations of motion of the model are derived below for the spring-mass form of
model because the derivation is a little bit more straightforward than for the pendulum
form. Damping is neglected initially so that a direct comparison can be made with the
slosh forces and torques given analytically in Chapter 1.

Figure 3.2 shows the model and the
symbols used in the analysis. The derivation of
the model equations given below is independent
of tank shape and fill level. The system of
springs, masses, etc., is supposed to “fit” inside
the actual tank and replace the liquid. For clarity,
only two spring-masses are shown, but there is in
fact one spring-mass for each slosh mode. The
spring masses do not have a moment of inertia,
so any needed moment of inertia Ι0 is assigned to
the rigidly-attached mass m0. The center of mass
of the system is at the same height above the
bottom of the tank as the liquid, and the locations
Hn of the masses are referenced to the center of
mass. The width of the tank is 2a. Gravity g or an
equivalent thrust-induced acceleration acts along
the axis of the tank. The tank is excited by a
small time-varying linear displacement Xo and
angular rotation αo about an axis through the
center of mass. The spring masses deflect a
distance xn relative to the tank walls as a result of
the tank motion.

Static properties.  To preserve the static properties of the liquid, the sum of all the masses
must be the same as the liquid mass mliq, and the center of mass of the model must be at
the same elevation as the liquid. These constraints are expressed analytically by:

∑ =+ liqn mmm0 (3.1)

∑ =+ 000 nn HmHm (3.2)

Dynamic properties.  Equations (3.1) and (3.2) are not sufficient to fix the values of the
model parameters. To do that, the model must also duplicate the sloshing forces, torques,
and natural frequencies. Duplication of the natural frequencies requires:

2
nnn mK ω= (3.3)

m1

m2

I 0m0

K1
2

K2
2

x1

x2

X0

α0

H0

H1

H2

2 a

Figure 3.2.  Schematic of equivalent
mechanical model for lateral sloshing
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where ωn is the slosh natural frequency of the nth mode. This is a first relation that shows
how the spring constant and spring-mass must be chosen; however, the model forces and
torques have to be examined to develop other relations.

The net force exerted on the tank in the +Xo direction is given by the reversed inertia
forces of the moving masses:

( ) ( )∑ +α++α−=− nnn xHXmHxmF &&&&&&&&&& 000000 (3.4a)

where sin(αo) has been replaced by αo because of the small-amplitude assumption and
the superscript dots indicate differentiation with respect to time7. Equation (3.4a) can be
simplified by inserting Eq. (3.2) into it to give:

( )∑ ++=− nn xXmXmF &&&&&&
0.00 (3.4b)

Likewise, the net torque exerted on the tank is given by:

( ) ( )∑ ∑−α++α+=− nnnnnn xmgHxhmHmIM 00000 &&&&&& (3.5)

where the last term is the torque caused by the offset of each spring-mass from the tank
centerline. (Some terms have already been cancelled out of this equation.) The equation
of motion for each of the spring-masses is expressed as:

( ) 0000 =α−+α++ gmxKHxXm nnnnnn &&&&&& (3.6)

Just as was done in Chapter 1, the tank accelerations are assumed to be oscillatory
at frequency Ω. The components of the tank motion are therefore given by −Xoexp(iΩt)
and −iαoexp(iΩt), and Eq. (3.6) can expressed as:
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where Eq. (3.3) has also been used to eliminate Kn. With these equations, the amplitudes
of the force and torque on the tank can be expressed analytically as:
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Exceptions.  For a tank without an axis of symmetry such as a tank with a rectangular cross
section, the specific slosh mode excited depends on the direction of the tank acceleration.
There can be two or more sets of modes with comparable frequencies and slosh masses.
The total model mass will therefore be greater than the total mass of liquid, in apparent
                                                     
7 There is also a net gravitational force or weight from the masses exerted in the lateral as well as in the

axial direction, because of the tilting of the tank. This force is counterbalanced by the force (not shown in
the figure) that supports the tank, which for a space vehicle is the lateral component of the thrust; the
vertical component of the thrust supports the weight of the tank.
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contradiction to Eq. (3.1). However, the total mass set in motion will never exceed the
total mass of liquid. An example of this exception is discussed later.

Rectangular tank
Since the slosh forces and torques were derived in detail in Chapter 1 only for a
rectangular parallelepiped tank, that tank shape will be used as an example to
demonstrate how model parameters such as mn, Kn, and Hn are determined as a function
of tank shape and fill level. We will consider only the two-dimensional slosh modes that
are excited by a translation of the tank in the x-direction or an angular rotation about the
y axis, as indicated in Figure 3.2.

The lateral force exerted on the tank by the sloshing liquid for a horizontal
excitation of the tank parallel to the x-axis is given by Eq. (1.28), which is reproduced
below:
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By comparing Eq. (1.28) to the expression for the force created by an x-translation of the
model [Eq. (3.8)] it can be seen that the slosh force will be duplicated by the model if the
model masses are chosen to be equal to:
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The slosh natural frequencies are given by Eq. (1.19a) (reproduced below):

( ) ( ) ( )( )[ ]ω π πn n g a n h a2 2 1 2 1= − −tanh (1.19a)

Hence, the spring constants of the model must be chosen as:
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The slosh force for a y-rotational acceleration about the axis through the center of
mass is given by Eq. (1.34), which is reproduced below:
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To allow easy comparison to the model force comparison, the slosh force expression is
re-written in a slightly different by using the following identities:
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After rewriting Eq. (1.34) with these identities, it can be seen from Eq. (3.8) that
duplication of the force caused by a y-rotation gives the same values for the model
masses as Eq. (3.10) does, and the axial elevation of the masses must be chosen so that:
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The slosh torque is given by Eqs. (1.30) for an x-translational excitation, and by Eqs.
(1.35), and (1.36) for a y-rotational excitation. Comparing these relations to the model
torque [Eq. (3.9)] gives (with the aid of some more identities) the same requirements for
mn and Hn that were found from the force duplication requirements. In addition, the total
moment of inertia of the model must be chosen to satisfy:
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This equation in effect determines Io since all the other model parameters are already
determined. Generally, Io is not a large contribution to the torque.

Summary.  The expressions given above show that the model parameters do not depend on
the amplitude or the frequency of a simple harmonic excitation of the tank. Since any
periodic excitation can be represented by a Fourier series of harmonic terms, the model
parameters are thus completely general and independent of the form of the tank
excitation. Furthermore, the dependency of the model spring constant on g can be
eliminated by switching to the pendulum form of the model. As was mentioned earlier,
the transformation is accomplished by locating the pendulum hinge point for each slosh
mass mn at an elevation Ln + Hn, where Ln = (g/ωn)0.5 is the pendulum length.

The parameters for the pendulum model are summarized in Table 3.1. The axial
locations Hn in the table give the positions of the pendulum hinge points. The table
shows that the frequencies of the n > 1 modes are considerably higher than the n = 1
mode; for example, if h/a = 1, the pendulum lengths are L1 = 0.317a, L2 = 0.106a, and L3
= 0.064a. The slosh mass decreases dramatically for the higher modes; again for h/a = 1,

Table 3.1  Model Parameters for a Rectangular Tank
 mliq = ρah = mass per unit width

Parameter Value

Slosh mass, mn
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Rigidly attached mass, mo
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Rigidly attached mass location, Ho ( ) 0mLHm nnn∑ −

Rigidly attached mass moment of
inertia, Io

Eq. (1.36) − ( )∑ −− 22
00 nnn LHmHm
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the masses are m1 = 0.258mliq, m2 = 0.0096mliq, and m3 = 0.0021mliq. It can be concluded
that only the first, lowest-frequency slosh mass usually needs to be considered.

Axisymmetric tanks
The parameters of the mechanical model for any axisymmetric tank can be computed
from the SLOSH computer program (although the program gives results for only the two
lowest-frequency slosh modes). For convenience, however, the model parameters for two
common axisymmetric tanks − a cylinder and a sphere −are summarized here in tabular
and graphical form below.

Cylindrical tank.  Table 3.2 and Figure 3.3 summarize the pendulum model parameters for a
cylindrical tank [BAUER, 1964]. The model moment of inertia is always only a fraction of
the moment of inertia of the “frozen” liquid.

Spherical tank.  The pendulum model parameters of the first mode for a spherical tank are
summarized in Figure 3.4, as
computed by the SLOSH code. The
value of Io is zero, and the pendulum
hinge points and the rigidly attached
mass are all located at the center of
the tank, because the model reflects
the fact that an angular rotation of a
spherical tank about an axis through
its center does not cause any motion
of an inviscid liquid. (That is, the
tank just “slides” around the liquid.)
Thus, Io, Ho and H1 are all equal to
zero and are not shown in the figure.
For low fill levels the slosh mass is
nearly equal to the total liquid mass;
that is, all the liquid participates in
the sloshing. Furthermore, the

Table 3.2  Model Parameters for a Cylindrical Tank
 mliq = (π/4)ρd2h            ξ1 = 1.841; ξ2 = 5.329; ξ3 = 8.531; ξn ≈ ξn-1 + π
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pendulum length for a nearly empty
tank is equal to the tank radius, which
indicates that the model mass is at the
tank bottom. The pendulum mass is
nearly zero for a nearly full tank, and
the pendulum length is quite small.
The slosh mass is a maximum near
the half full level.

3.3 Inclusion of Damping
A fraction of the kinetic energy of a
sloshing liquid is dissipated during
each cycle of the motion; this was
discussed in detail in Chapter 2. An
exact analysis of how to include
damping in a mechanical model is
difficult, but when the damping is
small, it is reasonable to assume that
it can be represented accurately by
equivalent linear viscous damping. (Even with
baffles, the damping coefficient γ is seldom
greater than about 0.05, which is 5% of the
critical damping) The damping coefficient is
determined by the methods discussed in
Chapter 2.

A mechanical model with linear damping
included is shown schematically in Figure 3.5;
again the spring-mass form is assumed, to be
consistent with the previous development. With
damping, the equation of motion for the slosh
mass is now:
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where γn = Cn/2mnωn is the damping coefficient
of the linear dashpot of the nth mode, and Cn is
the value of the dashpot constant. By carrying
out the analysis as before, the slosh force is
determined to be given by the expression:
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Since the damping is assumed to be small, the assumption is made the model parameters
mn and Hn are identical to the undamped case. Furthermore, the same damping is applied
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to the translational motion and to the
rotational motion of the model, but this
has been verified experimentally
[ABRAMSON, ET AL, 1961].

Figure 3.6 shows that the force
predicted by the damped mechanical
model (using a damping coefficient
determined empirically by the methods
discussed in Chapter2) agrees well
with experiments for the n = 1 mode,
thus validating the assumptions made
in the model development. The n = 2
mode resonance is more prominent in
the tests than predicted by the model;
this is primarily caused by the need to
use the n =1 mode damping
coefficient, for the n = 2 mode since,
as discussed in Chapter 2, γ1 is the only
one than can be measured reliably in
tests. Evidently the second mode
damping was actually smaller than the
first mode damping in these tests.

By following the same
procedure, the torque predicted by the
damped model can be written as:
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This result also agrees well with experimental results.
The damped slosh torque shows the same characteristics as the force for low and high frequencies. When
the damping becomes very large, the model predicts that the torque asymptotically approaches:
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(or with Hn replaced by Hn − Ln for the equivalent pendulum model). This expression represents the
torque produced by an ideal inviscid liquid that fills a capped container. From the plot shown in Figure
3.3, it can seen that the effective moment of inertia of this liquid mass is less than that of the equivalent
rigidized or “frozen” liquid. But for large damping the effective moment of inertia should in fact be equal
to that of the frozen liquid since the fluid’s resistance to shearing has theoretically become infinite. In
other words, Io must be changed to account for the damping. One way to do this is to modify the model
by including a weightless disk with moment of inertia Id, which is connected to the tank walls by means
of a dashpot, and by replacing Io with a moment of inertia equal to Io − Id [BAUER, 1964]. The magnitudes
of Id and the Id dashpot are chosen to make the model’s effective rigid-body moment of inertia agree with
experiments. These corrections are negligible for ordinary, realistic values of damping.
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3.4 Mechanical Model Parameters from the SLOSH Code
The SLOSH code can be used to predict the parameters of the first two slosh modes of a
pendulum model for any axisymmetric tank shape, for any fill level. The damping is
predicted from the correlations given in Chapter 2, and the code allows the use of ring
baffles. The code also predicts the loads on a ring baffle and the pressures on the tank
walls (outer and inner, as appropriate). The Appendix summarizes the theory upon which
the code is based.

3.5 Experimental Derivation of Model Parameters
To determine the parameters of a mechanical model by the procedures described in
Sections 3.2 and 3.3, a theoretical analysis of the sloshing is needed. In many cases, such
an analysis is not possible (for example, a tank fitted with a flexible bladder that covers
the liquid surface) or is not practical (for example, a cylindrical tank divided into
irregularly shaped compartments). For those cases, the model must be developed from
experimental measurements, generally using scale model tanks. The best procedure is to
excite the tank into simple harmonic motion using both horizontal and pitching motions
over a range of frequencies that encompasses the slosh natural frequencies, measure the
resulting force and torque responses as a function of excitation frequency, and fit a
model to the force and torque measurements [UNRUH, ET AL, 1986].

The test procedures can be simplified if the experimental apparatus allows the tank
to be stopped quickly without introducing excessive electrical noise or structural ringing,
and if the instrumentation is sufficient to resolve the maximum force and torque
immediately after the tank is stopped [SUMNER, STOFAN, AND SHRAMO, 1964]. For
example, if the tank excitation is a pure translation of amplitude X0 at a frequency ω
considerably below the slosh natural frequency ω1, the slosh mass can be computed by
combining Eqs. (3.4a) and (3.6) to give:








ω
−

ω
= 2

1
2

0
1

11
X

Fm max (3.19a)

and the location of the slosh mass pendulum hinge point above the center of mass of the
liquid can be computed as:

max

max
F
MH =1 (3.20a)

where Fmax and Mmax are the peak measured forces and torques just after quick stopping
the tank. Generally, however, it is more accurate to conduct steady state sloshing tests to
determine the complete force and torque response, if for no other reason than this allows
the damping to be determined by the half power method.

Examples.  The first example of the use of test data to develop a mechanical model is for a
tank shape that is not axisymmetric. At one time, NASA considered using the liquid
hydrogen tank of the S-IVB stage of the SATURN V “moon rocket” as an orbiting
laboratory. The tank was subdivided into a series of irregular compartments, connected
by doors, which would be used as laboratories after the liquid hydrogen had been
expended. The configuration of the compartments is shown in Figure 3.7 (looking down
the tank axis). The irregularly-shaped compartments altered the sloshing characteristics
of the S-IVB stage and also made the sloshing susceptible to roll excitation.



3.  MECHANICAL MODELS OF SLOSHING

52

The slosh modes were determined
by laboratory tests of a 1/14.8 scale
model that used water as the model
liquid [DODGE AND GARZA, 1969]. Tests
were conducted with the doors between
the compartments open and closed; the
“doors open” configuration coupled the
sloshing in each compartment, but it was
found that the results did not differ
greatly from the “doors closed”
configuration, so most of the tests were
conducted with the doors closed. Both
translational and roll excitations were
used. Load cells were used to measure
the slosh force in the direction of
excitation and the torque about an axis
perpendicular to the direction of the
translational excitation.

Only the translational excitation
tests will be discussed. The slosh modes and natural frequencies were determined by
oscillating the tank in translation at a series of angles θ relative to a fixed direction
(shown in the figure) over a range of frequencies. The modes were identified by noting
the directions for which the maximum force was obtained for each compartment when
only that compartment contained liquid. After the modes were identified, detailed steady
state force and torque measurements were obtained over a frequency range that
encompassed the slosh frequency. The damping was determined by the half-power
method described in Chapter 2, using the force response plots as a basis.

Figure 3.8 shows the model
that was developed from the test
results. The spring-mass form of
the model is shown in the figure
but a pendulum form is equally
applicable. Note that the locations
of the undisturbed slosh masses
actually coincide with the center
of mass of the compartment; they
are shown displaced from this
location only for the sake of
clarity in depicting the number of
slosh modes considered in the
model. The small compartments
shown to the right of
Compartments 1 and 2 in Figure
3.7 were not considered since
their slosh masses were small and
the slosh frequencies high.

The models for the rectangular Compartments 1 and 2 will be discussed as an
example of the results. The directions of the two slosh modes for each compartment were
at right angles to each other (i.e., one mode was aligned with θ = 0° and the other was

θ
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aligned with θ = 90°). When the excitation is directed along an arbitrary angle θ (as
shown in Figure 3.7), the forced response of the nth slosh mode for, say, Compartment 1,
can be expressed as:

( )nnnnnnnnn mXxkxixm θ−θ=+γω+ cos2 0&&&&& (3.21)

where xn is the displacement of the slosh mass mn along the line of action of the mode.
From the general relations given previously, the force resolved in the direction of the
excitation is given by:

( )[ ]∑ θ−θ++= nnn xXmXmF cos000 &&&&&& (3.22)

where m0 is the rigidly attached mass for this compartment. Combining these two
relations gives the result that the slosh force in the direction of the excitation is:
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Equation (3.23) demonstrates that regardless of the direction of excitation, the effective
mass that participates in the resonant part of the force is never larger than the total liquid
mass, although the sum of the slosh masses of the model might indeed be larger than the
liquid mass8. This confirms the remarks made earlier about the realism of the model.

The line of action of the two slosh modes in the wedge-shaped compartments
(Compartments 3 and 4) were not quite perpendicular to each other, although they
differed from perpendicularity by less than 8°. Thus, there was not a direction of
excitation that excited only one of the modes. Whether this lack of perpendicularity was
real or merely an artifact of small
nonlinear effects was not clear in
the experiments.

An example of the degree to
which the model predicts the test
results is shown in Figure 3.9 for
Compartment 5. For this
compartment, there were two
noticeable modes aligned with the θ
= 0° direction and one mode
aligned with the θ = 90° direction.
(For clarity, only one θ = 0° mode
was shown in Figure 3.8.). The
model-test comparison is
reasonably close.

The force and torque
amplitudes shown in Figure 3.9 are
for the 1/14.8 scale model, and they
cannot be scaled directly to full size
                                                     
8 Let Rn represent the resonance factor for each mode. The resonant part of the force is then equal to

m1R1[cos(θ – θ1)]2 + m2R2[cos(θ – θ2)]2. The worst case is when the natural frequencies of the modes are
equal, so that R1 = R2. After expanding the cosine terms, the resonant part of the force is thus no bigger
than R1[m1(cosθ)2 + m2(sinθ)2]. Even if m1 = m2 = mliq, this term is no bigger than R1mliq.
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because the damping for the full size tank is
considerably different than for the scale model
tank. However, the model parameters, including
the damping coefficient (using the Re parameter),
can be scaled up and the full scale responses can
be computed from the scaled up model.

Another example of a slosh model
developed from test data is the model for the
Telemetering and Data Relay Satellite (TDRS).
To minimize shifting of the spacecraft center of
mass as the propellants were depleted, TDRS
utilized an over and under arrangement of tanks
located on the centerline of the spacecraft. The
liquid in each tank was held in place by a flexible
bladder, as shown in Figure 3.10. The bladders
also provided a positive method of expelling
propellants from the tanks in low gravity. During
thrusting conditions, the liquid configuration in
the upper tank became unsymmetrical, with much
of the liquid forming a pendulous “blob” on one
side of the centerline, since this configuration has
a smaller static potential energy than a
symmetrical configuration. The inherent stiffness
of the bladder was not enough to return the liquid to a symmetrical configuration during
periods of low gravity, so a mechanical model for this tank had to be developed for an
unsymmetrical configuration. A considerable amount of preliminary testing was needed
to understand the sloshing in the upper tank [KANA, DODGE, ET AL, 1979, 1981, 1987].

Sloshing in the lower tank was fairly conventional although the bladder concentrated
the slosh wave near the tank axis. A pendulum model was assumed but the pendulum
hinge point had to be attached to the tank by a rotational spring to simulate the stiffness
of the bladder. For this kind of model, the pendulum frequency is:

50
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where L is the pendulum length, mslosh is the slosh mass, and Kbladder is the effective
torsional spring stiffness of the bladder. By conducting tests with two liquids of different
density, mslosh was actually varied in proportion to the different liquid densities, and
different slosh natural frequencies were thereby measured for the different liquids. With
two determinations of ωs, the model parameters mslosh, L, and Kslosh could all be
determined from the force and frequency measurements.

Sloshing in the upper “upside down” tank was quite unconventional. If a
translation excitation was applied along the long axis of the tank in the plane of Figure
3.10, an antisymmetrical wave was formed on the liquid bladder interface roughly like
the one shown in Figure 3.10. If a translational excitation was applied in the direction
normal to the plane of the tank shown in Figure 3.10, another, different slosh wave was
formed in which the liquid blob tended to move in and of the plane of the figure. If the
excitation was too large, the blob tended to rotate around the tank. Furthermore, if the
tank was tilted to simulate an off-axis thrust direction, the entire blob “flopped” to a new

Forward Tank

Aft Tank

Figure 3.10.  TDRS tank schematic
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position when the tilt exceeded a critical magnitude (about 20°). There were also other
modes and stability considerations, but they are not discussed here.

After a lot of scoping tests, it was finally determined that an inverted pendulum
was an acceptable
representation of the sloshing
in the upper tank. The model
is shown schematically in
Figure 3.11. The equilibrium
position of the pendulum was
tilted from the vertical at an
angle equal to the critical tilt
angle discussed above. The
pendulum mass rested on a
guiding surface through a
spring and dashpot
arrangement. This spring and
dashpot simulated the
sloshing observed for an
excitation direction parallel
to the long axis of the tank (the mode illustrated in Figure 3.10). The pendulum mass
was also connected to another spring and dashpot that simulated the slosh observed for
translational excitation perpendicular to the plane of Figure 3.10. (The two slosh masses
had different magnitudes but this feature is not depicted in Figure 3.11.) The entire
arrangement was attached to two slider blocks that rested on the guiding surface. The
“stiction” between the sliders and the guiding surface prevented the mass-spring-dashpot
combination from rotating around the tank except when the excitation exceeded some
critical level (which determined the amount of stiction). The mechanical model
represented the observed sloshing and stability characteristics very accurately.

3.6 Nonlinear Mechanical Models
Mechanical model analogies have also been developed for sloshing motions that have
wave amplitudes large enough to make the linearized theory of Chapter 1 invalid. The
theory of nonlinear sloshing is discussed in Chapter 5. There are many nonlinear
phenomena of interest, ranging from an increase of slosh natural frequency with wave
amplitude to the occurrence of very complicated nonplanar motions. The pendulum form
of the mechanical model analogy for linear sloshing also possesses somewhat similar
nonlinear characteristics when the pendulum amplitude is large. Several examples of
nonlinear mechanical models are discussed below.

Rotary slosh model.  When liquid in an axisymmetric tank is excited at a frequency very
near the slosh natural frequency, the normal antisymmetric up-and-down planar-like
slosh wave becomes unstable [BERLOT, 1959; HUTTON, 1964; ABRAMSON, ET AL, 1962;
ABRAMSON, ET AL, 1966]. The form taken by the instability depends on the proximity of
the excitation frequency to the natural frequency.
1. When the excitation frequency is significantly above or below the natural frequency,

the normal antisymmetric planar motion of the surface occurs.
2. When the excitation frequency is just slightly greater than the natural frequency and

the amplitude of the excitation motion is sufficiently large, the nodal line of the
standing slosh wave rotates around the tank at about the same frequency as the
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Figure 3.11.  Equivalent mechanical model for TDRS
forward tank.
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excitation; this rotational motion is superimposed on the normal antisymmetric wave.
The liquid has a definite angular momentum which it acquires as a consequence of
the nonlinear coupling between the wave motion parallel to the direction of
excitation and that perpendicular to the plane of excitation.

3. When the excitation is just below the frequencies for which rotational motion occurs,
the slosh nodal line does not rotate steadily but instead first rotates in, say, the
counterclockwise direction, then stops, and then rotates in the clockwise direction,
then stops, and so on. This motion is called swirling.

A conical pendulum is known to have several similar instabilities, so several
investigators have used a conical pendulum analogy to predict and understand the
observed instabilities of sloshing. A conical pendulum (also called a spherical pendulum)
is a pendulum that is free to swing in any plane.

Figure 3.12 shows a conical pendulum excited
by a simple harmonic translation and defines the
angles that specify the position of the pendulum with
respect to the x,y,z axes. The length of the pendulum L
is chosen so that the pendulum frequency ω1 = (g/L)0.5

is equal to the slosh natural frequency. The amplitude ε
of the excitation is scaled to the pendulum length L.
The excitation is along the y-axis, so stable to-and-fro
motion of the pendulum occurs in the y-z plane (i.e.,
β= 0, α = γ). The stability of this motion is to be
determined.

The equations of motion for the pendulum are
derived by using the assumption that sin(α) can be
approximated as α − α3/6 and cos(α) ≈ 1− α2/2, and
similarly for the sines and cosines of the other angles.
The governing equations for the pendulum are:
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The angle γ has been eliminated in these equations by using the trigonometric relation
β+α=γ 222 sinsinsin .

The equations clearly have a solution β = 0 that corresponds to planar but nonlinear
motion. It can be shown that they also have a nonlinear solution in which the pendulum
executes a rotation about the z-axis, and other solutions as well. These solutions
represent stable solutions only for certain ranges of the parameters. The stability
properties of the solutions can be found by introducing a small perturbation and
determining the conditions for which the perturbations grow or decay in time. The results
can be described in terms of a dimensionless frequency ( )[ ]2

1
2
1

232 ωω−ωε=µ − . FREED

[1957] and MILES [1962] have shown that the motions and their stability depend on µ as
follows:
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analogy for rotary sloshing
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1. Simple harmonic planar motion is stable in the frequency ranges µ < − 0.945 and µ >
0.757; these solutions are analogous to the usual antisymmetric slosh wave with a
fixed nodal line.

2. Simple harmonic nonplanar motion is stable in a frequency band just above the
natural frequency 0.154 < µ < 0.757; this solution is analogous to rotary sloshing in
which the nodal line of the antisymmetric slosh wave rotates around the vertical axis
of the tank.

3. Simple harmonic motions in which the plane of the pendulum motion oscillates are
stable in a narrow frequency band around the natural frequency − 0.945 < µ < 0.154;
this solution corresponds to a to-and-fro swirling oscillation of the nodal line of the
antisymmetric slosh wave about the vertical axis of the tank.

For frequencies such that µ > 0.757, both planar and nonplanar (rotational) motions are
stable. Which form of solution occurs (or which form of sloshing occurs) depends on
whether there is any initial nonplanar motion (initial rotation of the liquid).

Figure 3.13 shows a comparison
of the predictions of the model to
experimental results [BERLOT,
1959]. The lower frequency
boundary, above which the slosh
wave nodal line oscillates to and
fro, is predicted fairly well.
However, the higher frequency
boundary, which is the upper
frequency for which a rotary slosh
wave can occur even when there is
no initial rotation, is only predicted
well for small amplitude motions.
Later experiments [ABRAMSON, ET
AL, 1966] showed that the upper
boundary is very sensitive to slight
imperfections in the tank shape or
excitation direction; when
considerable care was taken to
eliminate the imperfections, the
experimental data was much closer to the conical pendulum predictions.

KANA [1989] has shown that when the equations of the pendulum are solved without replacing the sines
and cosines by the first few terms in their series expansions, the results agree well with experiments not
only with respect to the regions of stability but also with respect to the force and moment magnitudes and
phase angles. More complete analyses of the motions of type 3 above have revealed that they are
essentially chaotic [MILES, 1984; KANA AND FOX, 1995].

Large amplitude sloshing.  It is sometimes possible to develop a mechanical model for large amplitude
sloshing by comparing the equations of motion of the hypothesized model to the force and torque
expressions resulting from the relevant nonlinear slosh analysis or experiment. This procedure is similar
to that described previously for linear sloshing. Since an analytical solution of the nonlinear equations of
motion of sloshing is generally not available, the slosh forces and torques have to be predicted
numerically by a computational fluid dynamics (CFD) simulation. The parameters of a hypothesized
mechanical model are determined by a curve-fitting or other error minimization procedure but only for
the tank fill levels and excitations conditions utilized in the CFD simulation. An example of this
procedure is discussed below.

The CASSINI spacecraft mission has long periods of coasting in zero-g between intermittent firing of
the course correction engines. During the coasting, the propellants in the tanks can easily accumulate in
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locations that are not in contact with the
tank outlets. If this were to occur, the
engines could not be fired since there
would be no propellant to feed them.
Consequently, before each engine firing,
small thrusters are fired to create a small
gravity-like acceleration aligned with the
vertical axis of the tanks to “settle” the
propellants over the tank outlets; the
thrusters are powered by hydrazine
contained in a separate smaller tank that
uses propellant management devices to
ensure that hydrazine is available when
needed. During the settling, the
propellants move bodily in the tanks, and
the resulting forces and torques needed to
be accounted for in the control scheme.
For that purpose, an equivalent
mechanical model of the large amplitude
motions was required.

The CASSINI tanks are spherical, so
the torques exerted by the liquid about
the center of the tank are negligibly small
regardless of the amplitude of the
motion. A CFD code  was used to predict
the propellant motion and the axial and
lateral forces, for several fill levels (corresponding to the fill levels at the main course corrections) and
thrust levels [DODGE AND GREEN, 1992; ENRIGHT AND WONG, 1994]. Figure 3.14 illustrates typical
liquid motions computed as a function of time, in a cross section through the center of the tank; the
motions are three-dimensional, but because of symmetry, the motions in this cross section lie entirely in
this plane. For clarity, only a few of the CFD velocity vectors are shown. A worst case initial condition
was assumed in which the liquid was at the end of the
tank opposite the outlet and slightly off center so that
the liquid would roll around the tank when the settling
acceleration was applied. (The initial configuration of
the liquid does not conform to the correct zero-g
surface tension configuration of a spherical gas
bubble. In fact, at the time of the study, no CFD code
could simulate the effects of surface tension accurately
during a large amplitude motion. In any case, the
liquid inertia forces are so large that surface tension
forces are insignificant after a very brief time.)

Figure 3.15 shows a model that was hypothesized
to represent the sloshing dynamics. Since, as was
shown by the CFD results, much of the liquid rotates
during the settling, the effective moment of inertia of
the rotating liquid  tends to retard the settling. For that
reason, the moving mass ms (rather than the fixed
mass) was assigned a moment of inertia Is. The
pendulum hinge point was connected to the tank by an
angular dashpot Cs (not shown in the figure) to
provide damping and to allow the liquid to settle.

The Equations of motion for the pendulum model are:

( ) θ=θ+θ+ sinaLCILm sssss
&&&2 (3.26a)

( ) amsinLcosLamF sssaxial 0
2 +θθ+θθ−= &&& (3.26b)

( )θθ−θθ−= sinLcosLmF ssstransverse
2&&& (3.26c)

t = 0 t = 200 sec

t = 400 sec t = 600 sec

Figure 3.14.  CFD simulation of liquid motion in a 60%
full 1.56 m diameter spherical tank after a settling

acceleration of  3.27 X 10-6go is applied.
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Figure 3.15.  Hypothesized mechanical
model of large amplitude sloshing.
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where a is the applied settling
acceleration. These equations were
integrated numerically in time for
each case. The pendulum angle θ
was assumed to correspond roughly
to the space-average inclination of
the liquid surface shown in Figure
3.14. The parameters of the model
were determined by trial-and-error
by comparing the model predictions
to the CFD-computed forces and
average inclination of the free
surface, as a function of time, and
adjusting the parameters until an
acceptable correlation resulted. The
pendulum mass was found to be
very close to 100% of the total
liquid mass except for nearly full
tanks; thus the pendulum mass was
somewhat larger than would be the
case for the slosh mass of ordinary
linear sloshing. Figure 3.16
compares the model to the CFD results. The mechanical model predicts the overall features of the CFD
simulation and gives a reasonable estimate of the forces as a function of time, but there are some
discrepancies. Better results could have been obtained by allowing the pendulum mass and pendulum
length to be a function of angular position, but this complication would have negated the simplicity
which is the main benefit of a mechanical model. There is no mathematical assurance in any case that a
lumped parameter model can duplicate the computed nonlinear liquid motions.
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APPENDIX SLOSH code theory and numerics
The SLOSH code is a numerical implementation of the theory developed in NASA CR-
222 and NASA CR-230 [LOMEN, 1965a, 1965b]. The code computes the parameters of
the first two slosh modes for any axisymmetric tank shape and fill level, including tanks
for which the free surface does not extend to the tank symmetry axis (e.g., a toroidal
tank). The user describes the tank profile in the code by approximating it as a series of
straight lines, circular arcs, and elliptical arcs. Damping is computed by one of the
correlations described in Chapter 2; the user must choose a tank shape for which a
damping correlation is available that best approximates the actual tank shape. Ring
baffles are allowed. The output of the code includes the load on ring baffles and the slosh
pressures on the tank walls (inner and outer, as appropriate.)
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In the following development, the liquid volume of the axisymmetric tank is V.
The free surface area is Sf. The height of the free surface above the tank bottom is H. The
acceleration of gravity is g. The distance from the tank axis to the tank wall measured at
the free surface elevation is a; when the free surface intersects the tank centerline, a is
also the radius to the tank wall at the free surface elevation.

The velocity potential of the sloshing is assumed to be of the form Φ(r,z)cosθ,
because only cosθ modes exert a net force or torque on the tank. Φ is assumed to vary
harmonically in time with frequency ω. The natural frequencies ωn are computed by
minimizing the following expression [LAWRENCE, ET AL, 1958]:
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where the first (volume) integral is the sloshing kinetic energy and the second (area)
integral is the sloshing gravitational potential energy9. The value of ω that minimizes
I(Φ) (i.e., makes it equal to zero) therefore makes the amplitude of the potential energy
equal to the amplitude of the kinetic energy, which it must be for any vibrating
mechanical system without dissipation; this value of ω is therefore the slosh natural
frequency. The potentials used in Eq. (A.1) are solutions of the conservation of mass
relation ∇2Φ = 0. To carry out the minimization numerically, the solutions are assumed
to be “deep tank” and “shallow tank” functions and the potential is expressed as a series
of these fundamental solutions:10
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Here, J1 are Bessel functions of the first kind of order one, and βn = 1.841, 5.331, …are
the roots of dJl(r)/dr = 0. Five terms of each kind (i.e., M = 5, N = 10) are sufficient for
excellent convergence. Putting this series expansion for Φ into the integrals and
performing the minimization (with respect to the Cn) gives a typical matrix eigenvalue
problem. Nondimensional variables are used in the results below: R = r/a; Z = z/a, and Φ
and φn are nondimensional as well. The eigenvalue problem is written as:
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where
                                                     
9 The gravitational potential energy is ∫∫ ηρ fdSg 2 but the wave height η is equal to [∂Φ/∂t]/g = ωΦ/g,

from the free surface boundary condition, with Φ evaluated on the free surface.
10 When the liquid depth is small compared to the tank diameter, the “shallow tank” potential is

independent of the axial coordinate. When the liquid depth is large compared to the tank diameter, the
“deep tank” potential does not depend on the bottom contour.



3.  MECHANICAL MODELS OF SLOSHING

62

RdRdZ
ZZRRR

A

V

nmnmnm
mn ∫∫ 





∂
φ∂

∂
φ∂+φφ+

∂
φ∂

∂
φ∂= 2 (A.6)

RdRB

fS

nmmn ∫ φφ= (A.7)

ga 2ω=λ (A.8)

The Amn integral is taken over the volume of the liquid and the Bmn integral is taken over
the free surface. As was mentioned earlier, the free surface does not have to extend all
the way to the tank axis; for example, a toroidal tank or an annular tank is allowed, or
whatever, so long as the shape is axisymmetric.

The nth slosh mode potential is expressed in terms of the Ck obtained from the
matrix eigenvalue solution for that mode:
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where the superscript <n> indicates that the Ck for the nth mode are selected.
The dimensional length of the pendulum for the nth slosh mode is given by:
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The slosh mass and pendulum hinge point are found by comparing the mechanical model
force and torque to the slosh force and torque, which are computed from the pressure
integrated over the tank walls. The pressure integrals are transformed using Green-like
theorems so the computer code can use integrals that are already available from the
eigenvalue problem. The intermediate steps are complicated and omitted here. The
results are summarized below. The nth slosh mass is given by:

( )aHbMM nnnn λγ= 2 (A.11)

where M is the liquid mass. The bn parameter is defined as:
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The integral is taken over the free surface and uses the fact that φ1 = R to write the
integral in terms of B1k. The γn parameter is also given by an integral over the free
surface:
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The dimensional height of the slosh mass pendulum hinge point above the bottom of the
tank is given by:
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Here the hn parameter is given by:
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where
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and the integrals are evaluated over the wet wall (i.e., R and Z on the wet wall).
The ratio of the slosh mass amplitude to the actual wave height amplitude at the

tank wall is needed to compute the slosh pressure on the wall and other items of interest.
It is computed in the computer program by equating the shift in the center of mass for the
model to the shift in the center of mass for the liquid. For the sloshing liquid, the shift in
the center of the mass for the nth mode is determined by the wave height ηn =
η0nΦ<n>cosθ/[Φ<n>(a)] where η0n is the wave height at the wall and Φ<n>(a) is the
potential of the nth mode evaluated at the free surface elevation at the wall. The
dimensional x-direction shift in the liquid center of mass is therefore:
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where the R-integral extends over the radial extent of the free surface. For the
mechanical model, the x-direction shift in the center of mass is just the deflection xn of
the slosh mass times the ratio of the slosh mass to the total mass. Thus, the ratio of the
wave amplitude to the slosh mass amplitude is:
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The R-integral is equal to (Vγn/π)bn where γn and bn are given above. Thus, after
substituting in the relation for the slosh mass, the ratio of slosh wave amplitude to slosh
mass amplitude can be written as:
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Equation (A.19) is used in the code but the same result can be obtained by equating the
dynamic forces exerted on the tank by the sloshing liquid and the slosh mass.

The pressure is equal to ρA0[∂Φn / ∂t] where A0 is the amplitude of the potential.
Given a slosh wave amplitude, the amplitude of the potential is equal to A0 =
gη0/ωnΦn(a), from the free surface boundary condition. Hence the pressure exerted on the
wall is equal to
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It might be noticed that ρgη0 is the pressure on the wall at the free surface elevation, so
the ratio of potentials in this expression merely indicates how the slosh pressure decays
with depth.

Calculating the rigid body moment of inertia exactly is extremely complicated.
The computer code approximates this moment of inertia by assuming it is the same as if
the liquid were frozen, which is a geometric calculation.

The other parts of computer program are routines to obtain the input data that
describe the tank shape, checking that the input is correct by drawing a picture of the
tank on the screen as the input is given, and printing the computed results. Matrix
manipulation subroutines are included as part of the program. Simpson’s rule is used to
perform the numerical integration.
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FFFFLUIDLUIDLUIDLUID    MMMMANAGEMENTANAGEMENTANAGEMENTANAGEMENT    ININININ    MMMMICROGRAVITYICROGRAVITYICROGRAVITYICROGRAVITY
This chapter is a substantial revision and expansion of Chapter 10 “Liquid Propellant Behavior at Low and Zero-G”
of NASA SP-106. The original authors were WILLIAM C. REYNOLDS and HUGH M. SATTERLEE.

4.1 Hydrostatics and Hydrodynamics in Zero or Microgravity
The previous chapters dealt with liquid motions for conditions when a large body force
(gravitational or equivalent acceleration) acted on the liquid. When the body force
becomes small – such as in the absence of gravity – other small forces come into play
that affect the statics and dynamics of the liquid. The most important of these is usually
the surface tension force at the free surface. Surface forces are sometimes called
capillary forces, and surface phenomena are sometimes called capillarity. This chapter
discusses the important effects of capillarity on fluid dynamics in low gravity.

Meaning of the term zero-gravity.  A spacecraft would have to be billions of miles away
from any massive body such as the earth to be in a location where all gravitational fields
are absent. Most orbiting satellites and spacecraft are therefore not in a location of zero
gravity (e.g., at a distance of 1000 miles above the earth, the gravitational acceleration is
still 64% of earth’s surface go). Nonetheless there are conditions where the dynamics of
a liquid particle in a gravitational field can be treated as if the particle were in a zero-
gravity field – which is the common meaning of the term zero-g. One example is a
spacecraft in orbit around the earth. The acceleration aV of the spacecraft in the direction
toward the center of the earth is exactly equal to the acceleration of gravity g at the
orbiting altitude. The force exerted on a particle of mass M in the vehicle can be
expressed as the sum of two forces, the weight of the particle Mg and any other force F:

( ) relVrel aFaagF MMM =+=+ or       

where arel is the relative acceleration. The force balance shows that the dynamics of the
particle relative to the vehicle is identical to the dynamics of the particle in a zero-g
environment, where the particle has no weight. For that reason, an apparent state of zero-
g is also called a state of weightlessness.

The condition of weightless can be obtained for systems on earth by letting the
system fall vertically downward, free of restraint, in a drop tower, or by containing the
system in an airplane flying a parabolic trajectory such that the vertical acceleration of
the airplane is equal to g0, or by using some other method to cancel the gravitational
body force such as magnetic effects [DODGE AND GARZA, 1972; SAWADA, ET AL, 1999]11.

For a spacecraft, the condition g = aV is met exactly only at the center of mass of
the vehicle and then only if there is no external drag on the vehicle. A vehicle in near
earth orbit experiences a drag acceleration of the order of 10-7g0. Furthermore, the earth’s
gravitational acceleration varies across the radial width of the vehicle; in low earth orbit,
this gravity gradient is of the order of 10-7g0 per meter. Consequently, for many space

                                                     
11 A solenoidal magnetic field is used to cancel the gravitational body force in a liquid that contains a

colloidal dispersion of micron-size iron particles. The magnetic force is exerted only on the particles but
the liquid clings to the particles. Small magnetic forces are introduced in transverse directions, so the
zero-g simulation is not perfect.
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missions, there is a residual effective gravity of about 10-6 to 10-8g0 acting on systems
within the spacecraft. For that reason, the environment in a spacecraft is generally
referred to as a micro-g environment rather than as a zero-g environment.

Surface tension and interface pressure jump
When a liquid has a free surface, the surface acts as if it were in a state of tension. The
tension, which is the result of short-range molecular interactions, acts in the plane of the
surface and is perpendicular to any line drawn in
the surface. The force exerted per unit length of
this line is called the surface tension, or more
generally, the interfacial tension, and is denoted
by the symbol σ.

Consider a section of a spherical free
surface between a liquid and a gas, as shown in
Figure 4.1. Since the interface has to be in
equilibrium, the surface tension pulling on the
interface has to be balanced by a pressure
difference P1 − P0 between the liquid and the gas
pushing on the interface. The component of the
surface tension force in the horizontal direction is
σ[2Rπsin(∆θ)]sin(∆θ). The horizontal component
of the pressure force is (P1 - P0)π[2Rsin(∆θ)]2.
Since the two forces have to balance, the pressure
difference has to be equal to:

DR
PP σ=σ=− 42

01 (4.1)

where R is the radius of the spherical bubble and D its diameter. More generally, the
interface curvature can vary from point to point, and the pressure difference is then:









+σ=−

21
01

11
rr

PP (4.2)

where r1 and r2 are the principal radii of curvatures at the point. This relation forms the
basis for the analysis of any hydrostatic interface in which capillary phenomena are
important. Equation (4.2) is often called Laplace’s law.

Surface tension is considered to be a thermodynamic property of the liquid and gas
and is a function of temperature. The magnitude of surface tension decreases
monotonically with temperature and becomes zero at the liquid’s critical point
temperature. The numerical value of σ is commonly cited for a liquid in contact with air
but the same value applies with good accuracy for a liquid in contact with its vapor.
During and shortly after the formation or destruction of new surface (for example, when
the area of a surface increases during sloshing), the apparent surface tension can differ
somewhat from the equilibrium value. This modified surface tension is called the
dynamic surface tension [SCRIVEN, 1960]. Fortunately, dynamic effects are negligible for
most liquids of interest in space applications.

Contact angle.  Another important capillary property is the contact angle, θc. The
intersection of a liquid-gas interface with either a solid surface or another liquid forms
three angles in a plane perpendicular to the three-phase line. The contact angle is a
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Figure 4.1.  Pressure difference across
a spherical liquid-gas interface
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geometric description of the
intersection. Figure 4.2 shows
several examples of such
intersections. The contact
angle is the angle measured
within the liquid tangent to the
liquid-gas interface at the
contact line. The value of the
contact angle is related to the
relative magnitudes of
microscopic adhesive and
cohesive forces [BIKERMAN,
1958]. If the contact angle is
less than 90°, the liquid is said
to “wet” the solid; if the
contact angle is greater than
90°, the liquid is said to be
“non-wetting”; if the contact
angle is exactly 0°, the liquid is said to be perfectly wetting. Both wetting and non-
wetting liquids adhere to solid surfaces.

Consider a liquid drop resting on the surface of another liquid, as shown in the
bottom left illustration of Figure 4.2, with both liquids under a third liquid or gas.
Subscripts are used to indicate the different surface tensions at the interfaces between
each of the three fluids. Force equilibrium of the contact line requires:

cccc φσ=θσφσ+θσ=σ sinsin      and    coscos 1213121323 (4.3)

These relations among the various contact angles and surface tensions have been
substantiated reasonably well by experiment.

Next, consider the intersection formed by a liquid, a gas, and a solid, as shown in
the bottom right illustration of Figure 4.2. The condition of horizontal force equilibrium
is satisfied by:

SLcGLSG σ+θσ=σ cos (4.4)

However, the condition of vertical equilibrium cannot be satisfied. Nevertheless, this
picture of the interfacial force is commonly employed and justified on the basis of its
analogy to Eq (4.3). Equation (4.4) is called Young’s equation. (There are obvious
problems in measuring the surface tension between the gas and the solid and the liquid
and the solid, but these tensions are conceptually similar to the surface tension between
the gas and the liquid.) As is evident from Eqs. (4.3) and (4.4), the contact angle is a
function of all three materials at the contact line, and in particular, it is not a property of
only the gas and liquid.

Although surface tension does not change markedly when the interface is in motion, the contact angle
may, and contact angle hysteresis and dynamic effects are common. If a little liquid is added to a drop on
a solid surface, the area of the base of the drop does not change immediately but the drop merely changes
shape and consequently the contact angle changes. After a period of growth, the base area suddenly
expands in a jerky manner, and the contact angle obtains its previous value. The greatest angle measured
during growth is termed the advancing contact angle and the smallest angle measured when liquid is
removed is the receding contact angle. A similar effect is observed when the plate on which the drop is
rested is tilted: the downhill angle is different than the uphill value. This hysteresis is also observed with
a moving interface or even when the interface becomes contaminated with dust or other foreign materials.
The angular amount of hysteresis is not large, and is practically non-existent for pure liquids on clean

1

2

3

φc

θc

�������������������������������������
�������������������������������������

θc

�������������������������������������
�������������������������������������

θc

�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������

σ
GL

σ
SL

σ
SG

wetting drops

wetting bubble

non-wetting drops

σ
23

σ
13

σ
12 solid-liquid-gas

liquid-liquid-gas

θc
θc

θc

θc

Figure 4.2.  Various wetting and non-wetting contact angles.



4.  FLUID MANAGEMENT IN MICROGRAVITY

68

surfaces [MICHAELS AND DEAN, 1961], including hydrocarbon propellants contained in clean metal tanks
and liquids such as methanol that tend to clean tank walls. Conversely, water tends to exhibit a
considerable amount of hysteresis, possibly because of the ease with which a water interface can be
affected by contaminants [DODGE AND GARZA, 1967]. A contact line for which the contact angle remains
reasonably constant during motion is called a free contact line; if the hysteresis is so large that the contact
line does not appear to move when the surface moves, the contact line is similarly said to be stuck.

Hydrostatic regimes
A simple estimate of the conditions for which surface tension is important can be
obtained from the rise of liquid in a very small diameter (capillary) tube, as shown in
Figure 4.3. The liquid is “sucked” up into the tube by the negative pressure created by
surface tension. The pressure jump across the interface from Eq. (4.1) is P∞ − P2 =
2σcosθc/r, assuming that the shape is approximately
spherical with a radius of curvature of r/cosθc. The
negative pressure balances the weight of the liquid
column; that is, ρgh  = P1 − P2. Since P1 is equal to
P∞, combining these two expressions gives:

22 grrh ρσ=                                           (4.5)

The height of the column depends on σ and r. The
dimensionless group ρgr2/σ (or sometimes ρgd 

2/σ),
in Eq. (4.5) is the Bond number, Bo; it is a
comparison of the relative magnitude of
gravitational and capillary forces12.

The shape of an interface depends on the value
of Bo. For Bo >> 1, gravitational forces are
dominant and the free surface is flat (except right at
the wall where the contact angle condition must be
satisfied) while for Bo << 1, capillary forces are dominant
and the free surface will be highly curved (unless θc = 90°
in which case it will be flat). For the special case Bo = 0,
there are no gravitational forces and the shape is
determined entirely by the contact angle.

An immediate application of these ideas is the
positioning of liquid propellant in a space vehicle tank.
Consider a cylindrical tank with a central tube as shown in
Figure 4.4. By choosing the tube and tank radii properly,
the propellant can be made to flow into the central tube
when the vehicle enters zero-g. Neglecting the thickness
of the tube wall and assuming θc = 0°, the pressures at the
inner and outer interfaces are:
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If Pb < Pa, liquid will flow into the inner tube. From Eq.
(4.6), this happens when ri < ro/2. Equation (4.6) has been

                                                     
12 Named after W. N. Bond, who did research at least as early as 1928 on the effects of surface tension on

the rise rate of bubbles in tubes.
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confirmed experimentally by drop tower experiments [PETRASH AND OTTO, 1964].

Hydrodynamic regimes
The motion of a liquid-gas system can be influenced by capillary forces, body forces,
inertia forces, and viscous forces. In some cases, all but one or two of the forces are
small and can be neglected, and analyzing the motion is considerably simplified.
Whether or not this is possible depends on the value of the dimensionless numbers that
separate the hydrodynamic behavior into regimes.

The relative importance of inertial and capillary forces is indicated by the ratio:

σ
ρ== LVWe

2

capillary
inertia (4.7a)

This is the Weber number, where L is a characteristic length of the system and V is a
characteristic velocity. If We >> 1, inertia forces dominate the behavior.

The relative importance of inertia and gravity (body) forces is indicated by:

gL
VFr

2

gravity
inertia == (4.7b)

This is the Froude number. When Fr >> 1,
inertia forces are dominant compared to
gravity forces. The Froude number is also
equal to the ratio of the Weber number and
the Bond number, Fr = We/Bo. The flow
regimes determined by We, Fr, and Bo are
shown schematically in Figure 4.5. In each
case, the importance of viscous effects must
be determined separately (for example, from
the Reynolds number).

Response time estimates.  Related to these
dimensionless numbers is the time for a
given dynamic response to occur. As a
specific example, we will consider the slosh
natural frequency. Chapter 1 demonstrated
that under high-g conditions the slosh
frequency ωn can be expressed as:

( ) 1for         2 ==ω BoAgLn (4.8a)

where A is a constant that depends only on fill level and tank shape. The left hand side of
this equation is a form of Froude number. When g becomes small, Eq. (4.8a) predicts
that ωn approaches zero. But when g is small, the flow regime is not dominated by
gravity, so the Froude number is not the relevant dimensionless parameter. Instead, the
flow regimes depends on capillary and inertial forces, and the Weber number is the
relevant dimensionless number. Since the characteristic velocity is still Lωn, the relevant
dimensionless form of the low-g natural frequency is therefore expressed as:

( ) 1for         32 ==σρω BoBLn (4.8b)

where B can depend on tank shape and fill level. Since Eq. (4.8b) does not depend on g,
ωn does not necessarily go to zero in zero-g.

0.01 1

10

100

Bo = ρgL  /σ2

W
e 

= 
ρ

LV
  /

σ
2

10 1000.1

0.1

0.01

Gravity

DominatedCapillary
Dominated

Inertia Dominated

Figure 4.5.  Hydrodynamic regimes



4.  FLUID MANAGEMENT IN MICROGRAVITY

70

Response times for other kinds of liquid motions can be estimated from the
appropriate dimensionless numbers. The characteristic times are given by:

regime dominated-gravity for the         gLT = (4.9a)

regime dominated-capillary for the      3 σρ= LT (4.9b)

These estimates are shown
quantitatively in Figure 4.6.
for a typical value of σ/ρ =
50 cm3/sec2. The characteristic
low-g time for a large tank can
be several minutes in low-g.

4.2 Thermodynamics of
Capillary Systems

The thermodynamic relations
that describe a capillary
system are helpful in
understanding the dynamics,
equilibrium, and stability
conditions of an interface in
weightlessness [REYNOLDS, ET
AL, 1964]. To derive these relations, we will consider the mechanical work done when a
change is imposed on the interface area and the wetted area of a capillary system. The
discussion is restricted to isothermal conditions; temperature effects are discussed in a
later section.

Consider a section
through the a liquid
cylinder attached to two
solid conical end pieces, as
shown in Figure 4.7. We
imagine that the cones are
pulled apart a small
distance ∆x, while the
volume of liquid is kept constant and the shape remains cylindrical. The capillary
pressure force Fp acting on the section is πr2(Pi − P0)= πr2(σ/r) = πσr. The surface
tension force pulling on the section is 2πσr. Since these forces are not equal, an
additional force F = 2πσr − πσr = πσr has to be applied to maintain the initial separation.
The work done when the cones are pulled apart is therefore (F + ∆F)∆x ≈ F∆x, after
neglecting second order terms. The change in liquid volume (which is zero) is given by:


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


θ

−∆−=∆=∆
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π−∆π+∆π=∆
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LrLrrLrrrLVol
tan

12or     0
tan

22
2

2 (4.10a)

where ∆r is positive when r decreases. From the geometry of the configuration, we find:

( )crxL θ∆+∆=∆ tan2 (4.10b)

The work done on the system can therefore be expressed as:
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( )[ ]crLrxFdW θ∆−∆πσ=∆= tan2 (4.10c)

The change in the area of the interface is ∆Ai = 2πr∆L + 2πL∆r, and the change in the
wetted area of the cone is ∆Awet = −4πr∆r/sinθc. By substituting Eq. (4.10a) into the
expressions for these two areas, we find that ∆Ai − cosθc∆Awet = −2πL∆r. This last
expression is also equal to πr∆L − 2πr∆r/tanθc. So, the work done on the system is:

( )wetci AAW ∆θ−∆σ=∆ cos (4.11)

Equation (4.11) shows that work is done when there is a change of the interface areas.
The case of constant θc is of the most interest. For that case, the capillary area Ac

is defined as:

wetcic AAA θ−= cos (4.12)

Hence, the work depends on the change in the capillary area:

cAW ∆σ=∆ (4.13)

An energy balance on the system while the interface is being stretched gives:

WQU ∆+∆=∆ (4.14)

where ∆U is the internal energy change of the system and ∆Q is the heat transfer. Since
the process is thermodynamically reversible, ∆Q = T∆S, where ∆S is the entropy change
and T is the absolute temperature. Combining these relations with Eq. (4.11) gives:

cAUST ∆σ−∆=∆ (4.15)

Now, consider a capillary system which reaches equilibrium with its environment
without a work interaction, such as liquid in a tank in zero-g. Conservation of energy is
simply ∆U = ∆Q and the second law of thermodynamics gives ∆Q ≤ T∆S, where T∆S is
given by Eq. (4.15). Combining these relations gives:

0≤∆ cA (4.16)

This final result states the important
conclusion that the equilibrium
configuration in zero-g has the
minimum capillary area of any possible
configuration.

Figure 4.8 illustrates the conclusion derived
from Eq. (4.16) for liquid in a cylindrical
tank when θc = 0°. Both configurations have
the same liquid volume. The configuration
on the right has a hemispherical interface,
and since θc = 0°, the radius of the
hemisphere is the same as the tank radius.
Thus, for this hemispherical interface
configuration, the capillary area is equal to:

( ) 0
2
0000

2
0

2
01 2222 HRRRRHRRRAcosAA wetcic π−π−=π+π+π−π=θ−= (4.17a)

The configuration on the left is similar to the normal high-g configuration. The interface is flat except for
a negligibly-small region right at the wall where the surface curves upward to meet the contact angle
condition. The liquid depth has increased by R0/3 for this configuration, compared to the hemispherical
configuration, since the volumes are equal for both. The capillary area for the flat interface is:
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Figure 4.8.  Two possible zero-g configurations
of liquid in a cylindrical tank.
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The capillary area for both configurations is negative, but the capillary area for the hemispherical
interface is more negative; hence we can conclude that for θc = 0° the configuration with the spherical
interface is the preferred one in zero-g. The preferred interface can be flat for some value of θc; for
example, it would be flat in a cylindrical tank when θc = 90°.

The case when the gravitational force is not zero is analyzed similarly. The work
done on a capillary system during a process when its center of mass is lifted by an
amount ∆h is ∆Wg = Mg∆h where M is the liquid mass. By following the same procedure
as before, it is found that the equilibrium configuration is such that:

0≤∆+∆σ hMgAc (4.18)

The term Mgh is the gravitational potential energy of the system. By analogy, the term
σAc is called the capillary potential energy. Therefore, the equilibrium state is the state of
minimum total potential energy PE, where:

MghAPE c +σ= (4.19)

This relation is the basis for determining low-g equilibrium capillary configurations as
well as the stability of those configurations.

Metastable configurations.  The previous thermodynamic analysis has proved that the stable
equilibrium configuration of a capillary system in an isothermal zero-g environment is
one for which the capillary potential energy PE = σAc has the smallest possible value.
There may be, however, several other configurations for which the PE has a local
minimum so that small perturbations also lead to an increase in the PE. All these states
are metastable because for a sufficiently large disturbance the system will settle down in
the configuration with the lowest of all values of PE. Nonetheless, the system may be
trapped in one of the metastable states if there are no large disturbances.

Non-isothermal conditions.  The preceding discussion considered only conditions for which
the temperature of the capillary system was uniform. Since surface tension depends on
temperature, additional phenomena need to be considered when the temperature is not
the same throughout the system. Non-isothermal configurations will be discussed briefly
later in this chapter.

Preferred configuration of drops and bubbles in zero-g
Consider a collection of bubbles in a zero-g liquid. Each bubble forms a sphere, because
that is the configuration with the minimum Ac (and therefore minimum PE) for each
bubble. But if two or more bubbles collide with a sufficient velocity, the bubbles will
coalesce into one larger bubble, because Ac of the combined bubble is less than the sum
of the Ac’s of the individual bubbles. Thus, there is a tendency for all the bubbles to
coalesce into one large bubble. We can conclude, therefore, that gas in a propellant tank
in zero-g will tend to form one connected volume (a single ullage volume). Experiments
have shown, however, that two or more large ullage bubbles can persist for considerable
periods of time [DOMINICK AND DRISCOLL, 1993]. By the same reasoning, we can conclude
that a collection of drops floating in the gas in a tank will tend to collect into one large
connected body of liquid.

We can also show that a drop prefers to be attached to the wall of a tank, as was
assumed in the illustrations shown previously in Figure 4.2, rather than floating freely in
the gas. The capillary area of the free drop is simply 4πR2, where R is the radius of the
drop. The radius of the flattened spherical shape of the same drop attached to the wall is
somewhat bigger than R. When we account for this change in radius and for the wetted
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area of the wall under the wall-bound part of the drop, we find that the ratio of the two
capillary areas is:

( ) (drops)            coscos32
4
1 31

3




 θ+θ−= cc

freec

attachedc
A

A
(4.20a)

This ratio is less than one for any value of θc > 0° and is equal to one for θc = 0° (for
which the attached drop looks just like a free drop). Consequently, we can conclude that
the drop attached to the wall is the preferred configuration because this configuration has
the smaller capillary area.

For a gas bubble, we can make the same analysis with the same conclusion. For a
bubble, it is more convenient, as shown in Figure 4.2, to define the capillary potential in
terms of the non-wetted area. This change is allowed because a constant can always be
added to the potential energy, since only changes in potential energy have meaning. If we
add the product of the total wall area and the contact angle to the capillary potential area,
and realize that the total area less the wetted area is the non-wet or dry area Adry, we find
that the capillary potential area is also equal to σAi + σcosθcAdry. Using this definition,
analysis of the potential energies of a freely-floating bubble and the same bubble
attached to the wall gives the ratio:

( ) (bubbles)          coscos32
4
1 31

3




 θ−θ+= cc

freec

attachedc
A

A
(4.20b)

This ratio is also always less than one.
To summarize, the preceding analyses prove that the most stable equilibrium

configuration of liquid and gas in a tank has the liquid collected into a single mass, the
gas collected into a single bubble, and both the liquid and the gas attached to the wall.
Most of the illustrations in this chapter are drawn in accordance with these conclusions.

4.3 Axisymmetric Interface Shape
One of the fundamental problems of managing liquid in a tank in low gravity is to
determine the shape and orientation of the liquid interface. Here, we will consider only
axisymmetric tanks when the gravity vector is aligned with the axis of the tank. The
shape of the equilibrium interface is
then axisymmetric and can be
derived from the preceding potential
energy relations by expressing the
capillary areas in terms of the
coordinates. It is easier, however, to
derive the governing differential
equation directly from a force
balance on the interface. Consider
the infinitesimal annular ring cut
from the interface shown in Figure
4.9. Surface tension pulls on the
edges of the annular ring and the
pressure difference between the gas
and liquid pushes on it. The force
balance in the vertical direction is:
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Figure 4.9.  Force balance for an
 axisymmetric interface
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After combining terms and discarding second order infinitesimals, the force balance
simplifies to:

( )
ds
drPPr

ds
dhr

ds
d

Lg −=




σ (4.21b)

As can be seen Figure 4.9, the geometric condition (dh/ds)2 + (dr/ds)2 = 1 also has to be
satisfied in addition to the force balance.

The gas pressure in Eq. (4.21b) can reasonably be assumed to be constant but the
liquid pressure PL = PL0 − ρgh is a function of elevation h, where PL0 is the (unknown)
pressure just below the center r = 0 of the interface. All these relations can be made
dimensionless in terms of the tank characteristic length D, with the dimensionless
symbols written as capital letters. We also need to define a dimensionless parameter λ
based on the pressure PL0 by the relation λ = D(Pg − PL0)/σ, the value of which is
unknown until the interface shape is determined. With these definitions, the shape of the
interface is governed by the following two differential equations:

( )λ+=




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 Bo
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subject to the boundary conditions that:

( ) ( ) ( ) ( ) 10    and     0000 ====
dS

dR
dS

dHHR (4.22c)

(Equation (4.22b) was derived by differentiating the geometric condition (dh/ds)2 +
(dr/ds)2 = 1 with respect to s.) The Bond number Bo is here defined as ρgD2/σ. (These
equations can be expressed in terms of the radial coordinate r instead of arc length s, but
doing so can cause difficulties if h is double valued for some values of r, which occurs
when the interface is bent over in spheroidal tanks.)

Equation (4.22c) specifies four boundary conditions, which is appropriate for the
two coupled second order differential equations given by Eqs. (4.22a) and (4.22b).
However, the parameter λ in Eq. (4.22a) represents a fifth unknown, and in fact, there is
a fifth boundary condition, namely that the interface slope α at the tank wall has to
correspond to the contact angle. In terms of the wall slope αw at the contact line, this
condition is θc = α − αw (negative values of α are used for convex interfaces).
Furthermore, the axial location of the center of the interface h = 0 is in effect a sixth
unknown that must be chosen such that the liquid volume is equal to the prescribed
volume. Although it is not difficult to integrate Eqs. (4.22a) and (4.22b) numerically,
generally an iterative procedure is required to match the conditions imposed at the
unknown elevation of the contact line at the wall.

An alternative method is to integrate the equations for a series of values of λ,
which yield values of α as byproducts, and cross plot the results [REYNOLDS, ET AL, 1964].
Figures 4.10a and 4.10b show a set of such plots from which the parameters of a given
interface can be determined. The sector volume Vs shown in Figure 4.10a is the volume
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of revolution
bounded by the
interface and the
plane of the
contact line;
likewise, the
sector height H
graphed in
Figure 4.10b is
the height of the
sector volume
from the center
of the interface
to the plane of
the contact line.

Figure
4.11 illustrates
how the plots
can be used to
determine the shape and location
of the liquid interface for an
example of a spherical tank.
Assume that the Bond number
has a value of two, the contact
angle is 20°, and the tank is 33%
full. After a few trial and error
iterations that involve reading
off values of the sector volume
Vs and height H for assumed
values of α, we find that β =
100°, α = 10°, H = 0.65R0, L =
1.17R0, and R = 0.98R0. Thus,
for this fill level, the contact line
is slightly above the center of the
tank, and the middle of the
interface is slightly below the
center of the tank.

For axisymmetric tanks,
approximate methods have been developed to predict the interface shape with good
accuracy [SATTERLEE AND CHIN, 1965; CUTSHALL, ET AL, 1996]. These methods assume
that the interface shape is an ellipsoid of revolution:

( ) 



 −±= 211 arbh (4.23)

where, as before, h is the height of a point on the interface above the center of the
interface; a is the semimajor axis of the ellipse; b is the semiminor axis; and the + sign is
used for the upper half of the ellipse when the interface shape is bent over. To determine
the a and b parameters of the ellipsoid, Eq. (4.23) is substituted into Eq. (4.22a) and
evaluated at the contact line (for a non-bent over interface) or at r = a (for a bent over
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interface). This process yields one
algebraic relation among a, b, and λ,
and the location of the center of the
interface h = 0. The other three
algebraic equations needed to
determine the parameters are derived
from the conditions that the interface
slope at the contact line is equal to
the prescribed value; the interface
radius at the contact line is equal to
the radius of the tank wall at the
contact line; and the liquid volume is
equal to the prescribed volume. As an
example, for a cylindrical tank and θc
= 0°, this process predicts that the
ellipsoid axes a and b are:

( ) ( ) ( ) 032               23
0 =−−= abBoabRa (4.24)

where Bo is the Bond number based on the tank radius R0 [DODGE AND GARZA, 1968]. For
this example, the liquid volume condition was not needed because the interface can be
translated along the tank axis to meet any specified volume. For other tank shapes, the
volume requirement must be imposed explicitly.

Non-axisymmetric configurations.  When the interface shape is not axisymmetric, the
boundary conditions are considerably more complicated than those expressed by Eqs.
(4.22c). A computer code that can determine the interface configuration numerically for
any tank shape and fill level is available for such cases [BRAKKE, 1998].

Low fill level zero-g configuration problems
A liquid interface in zero-g forms a surface of constant curvature - a sphere or sector of a
sphere, depending on the contact angle; if θc = 0°, the interface is a complete sphere.
When the liquid fill level is small (gas volume is large) and the contact angle is near 0°,
the radius of the interface is fairly large, and the gas ullage bubble may have to be
swallowed (be in a central location within the tank) to fit in the tank, or it may even form
an annular interface that intersects the top
and bottom of the tank [CARNEY, 1986]. The
shape of these “double” interfaces, which
are illustrated on the right side of Figure
4.12, can nonetheless be computed by the
theory presented above. It is evident from
geometrical considerations that
“swallowed” and “annular” interfaces
cannot form in cylindrical or spherical tanks
regardless of fill level, and they can form
only for very small fill levels in spheroidal
tanks whose ratio of minor to major axis is
not too different from one (i.e., nearly a
sphere). Double interface configurations
will therefore not be considered further
here.
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4.4 Stability of Zero-G Interfaces
In zero-g, a liquid interface will hold its position and shape when the container is slowly
inverted, because there are no external forces to cause the liquid to “fall”. The inversion
may also be possible for some range of small but not exactly zero gravitational
accelerations,. The interface is said to be stable for this level of adverse acceleration;
when the acceleration exceeds the critical value, the interface is unstable and the liquid
will fall when the container is inverted. The magnitude of acceleration that must be
imposed on the zero-g configuration to make the liquid in a tank “fall” to a position over
the tank exit is important in space applications.

The concept of interface stability can be demonstrated with a mercury-in-glass thermometer. When
the thermometer is held in any position, the interface is stable and the mercury does not run down the
tube. But if the thermometer tube is too large, say, 3 cm in diameter, the mercury always falls when the
thermometer is inverted. We expect, therefore, that there is a critical radius below which the interface is
stable and above which it is unstable. Alternatively, for a given tube radius, there is a critical acceleration
that can be imposed below which the interface is stable and above which it is unstable.

At first thought, we might attribute the support of the mercury in the upside down position to surface
tension because the convex shape of the interface creates a force at the tube walls that opposes the weight
of the liquid. However, a wetting liquid such as an alcohol-in-glass thermometer, which has a concave
interface shape and for which surface tension exerts a force at the wall in the same direction as the
weight, is also stable. In fact, it is the negative pressure (relative to atmospheric) at the top, closed end of
the tube that supports the liquid weight in both cases. This can be demonstrated again by the common
experience of sucking water into a drinking straw, capping one end of the straw with a finger, and turning
the straw upside down. As long as the upper end of the straw is capped, the water remains in the straw.
But when we uncap the straw, and release the negative pressure, the water runs out.

Interface stability can be analyzed in several ways. One can do a dynamic analysis of
the liquid motion, and look for normal modes of oscillation that grow in amplitude with
increasing time [CONCUS, 1963]. This method is difficult computationally, for although
the problem might be linearized to investigate small perturbations, the domain in which
the solution must be obtained is not simple. It is possible to show, however, that the
stability limit obtained from the eigenvalue equation of the dynamic analysis is exactly
the same as that obtained from the thermodynamic criterion discussed earlier, for which
the marginal stability of the interface is determined statically [CONCUS, 1964]. The
thermodynamic or static method is significantly easier analytically than the dynamic
method and will therefore be used in the examples discussed below. The low-g sloshing
analysis described later in this chapter will demonstrate that both methods give identical
results.

Axisymmetric interface example
To illustrate the
thermodynamic criterion of
marginal stability, we will
carry out an analysis for the
case of an axisymmetric
interface in a cylindrical tank
as shown in Figure 4.13. The
contact angle is assumed to
be equal to 90° so the zero-g
equilibrium interface is flat.
We want to determine the
magnitude of an imposed
gravitational acceleration g
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Figure 4.13.  Stability of liquid in an inverted cylinder
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that will de-stabilize the flat interface and cause the liquid to fall to the bottom of the
tank. To use the thermodynamic criterion method, the area of the interface has to be
computed for a small disturbance δz(r,θ) of the flat interface, where θ is the angular
coordinate. The area Ai of the disturbed interface is given by:
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Since θc = 90° for this example, the wetted area Awet contribution to the capillary energy
Ac in Eq. (4.19) falls out of the calculations. Further, since δz is a small perturbation, Eq.
(4.25) can be simplified by retaining only the lowest order terms. The capillary potential
energy is therefore:
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where Ai0 is the area of the flat interface. The gravitational potential energy is given by:
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where PE0 is the potential energy of the initial flat interface configuration.
At the marginal stability limit, the total potential energy does not change when the

interface is perturbed slightly. Consequently, by combining Eqs. (4.26a) and (4.26b), the
condition of marginal stability is found as the solution of:
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since σAi0 = PE0 cancels out. A realistic or “acceptable” perturbation has to be assigned
to Eq. (4.27). The perturbation must satisfy the condition that the liquid volume is the
same for the perturbed configuration as for the equilibrium configuration. (Furthermore,
although it is not absolutely necessary, the perturbation function should also satisfy the
equations of motion of the liquid for best accuracy in predicting the value of the critical
acceleration.)

For a first example, an antisymmetric instability is assumed, as shown in the left hand
part of Figure 4.13. The antisymmetric perturbation that satisfies the condition of
constant liquid volume and the equations of motion is δz = AJ1(λr)cosθ, where J1 is the
Bessel function of the first kind, λ is an eigenvalue such that dJ1/dr = 0 at r = R0 (which
is required to make the liquid velocity at the wall zero perpendicular to the walls), and A
is an arbitrary amplitude. With this definition of δz, the integrations in Eq. (4.27) can be
performed, and we find that the critical acceleration g that makes δPE = 0 is equal to:
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R
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The smallest value of λ from dJ1/dr = 0 is 1.84 (which is the eigenvalue for normal high-
g sloshing in a cylindrical tank), so the critical Bond number is Bocrit = 1.842 = 3.386.
Consequently, if we want to cause liquid in a zero-g environment to reorient or settle
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over the tank exit, thrusters must be used to exert an acceleration along the tank axis at
least equal in magnitude to gcrit = 3.386σ/ρ(R0)2.

As a second example, a symmetric perturbation is assumed. The appropriate
perturbation function is δz = AJ0(λr), where λ is now the root of dJ0/dr = 0. Equation
(4.27) again gives Bocrit = λ2, except that now λ2 = 3.8322 = 14.68. The symmetrical
perturbation requires a considerably larger acceleration than the antisymmetrical one.
Thus, the antisymmetrical instability should always occur in practice. That is, the
acceleration required to make the interface unstable will correspond to the value
appropriate for an antisymmetric perturbation. This is in fact a general result. The
antisymmetric mode (sometimes called modal reorientation) always requires a smaller
de-stabilizing acceleration than the symmetric mode (sometimes called quiescent
reorientation) [STEPHENS, 1965].

As might be expected, the de-stabilizing acceleration depends on the contact
angle. The case θc = 0° is somewhat more difficult analytically than the case θc = 90°
because the equilibrium zero-g interface is highly curved. The symmetric instability for
θc = 0° has been investigated experimentally, and the critical Bond number found to be
0.84 [MASICA, ET AL, 1964]. An approximate solution of the equations for the
antisymmetric mode yields Bocrit ≈ 0.81, which is less than the experimental value found
for the symmetric mode. Hence, the difference between the critical accelerations for the
symmetric and antisymmetric instabilities is small. As a  result, the drop tower
experiments from which the symmetrical instability results were obtained had to be done
very carefully to prevent the antisymmetric mode from occurring [MASICA, ET AL, 1965].

The difference between the critical accelerations for θc = 90° and θc = 0° is
significantly large. Similar differences occur for other tank shapes. For example, for a
two dimensional rectangular tank, the antisymmetric solution for θc = 90° is Bocrit = 2.46
while Bocrit = 0.72 for θc = 90° [CONCUS, 1963]. This is a general result; that is, the
critical acceleration always has its largest possible value for a flat interface (α = 0°, in
the nomenclature of Figures 4.10a and 4.11).

Annular interface
Annular tanks are used in some
booster designs. The computed
stability of a flat interface in an
annular tank can be determined in a
manner similar to that used for the
previous cylindrical tank example.
Figure 4.14 shows the results
[REYNOLDS, ET AL, 1964]. As can be
seen, the critical Bond number for
the ratio Ri/R0 = 0 (corresponding to
a thin wire) is the same as that
obtained above for a cylindrical
tank. This suggests that a small-
diameter standpipe in the center of
a large tank would have little effect
on the critical Bond number.

It is perhaps surprising that
the critical acceleration decreases as
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Figure 4.14.  Stability of an annular interface: θc = 90°
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the width R0 − Ri of the interface decreases (i.e., as the radius ratio increases toward
one). However, the slosh frequency for an annular tank also decreases as the radius ratio
increases, and the interface stability is related to the slosh frequency (which will be
discussed in the next section).

Neutrally stable zero-g interfaces
For some combinations of tank shape, liquid fill level, and contact angle, the zero-g
equilibrium interface is
neutrally stable. This means
that any value of acceleration
– regardless of how small–
will cause the interface to
become unstable, and the
liquid will move bodily to the
lowest position in the tank.
Figure 4.15 shows
graphically why the interface
in a spherical tank, for
example, is neutrally stable
regardless of contact angle.
When an antisymmetric perturbation is imposed on the zero-g interface, the interface
area does not change, and the capillary potential energy does not change either.
However, the center of mass falls relative to the imposed acceleration, so the total
potential energy decreases. Thus, the interface is unstable when any adverse acceleration
is imposed. Zero- g interfaces in certain other tank shapes with curved walls are also
neutrally stable [MYSHKIS, ET AL, 1987; ANTAR AND NUOTIO-ANTAR, 1993].

General interface stability criteria
By making the governing equations dimensionless and examining the forms of the
possible solutions, it has been found that the critical Bond number for interface stability
in an axisymmetric tank can be related to (a) the radius of curvature Rw of the bounding
walls at the contact point in the plane containing the tank axis and (b) the angle α which
the interface makes with the tank axis at the contact line. This relationship can be
expressed nondimensionally in the form:
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crit R

RfBo (4.29)

Some of the conclusions that can be drawn from these analyses [MYSHKIS, ET AL, 1987;
ANTAR AND NUOTIO-ANTAR, 1993] include:
1. An interface is unstable for all settling accelerations if the wall curvature is positive

(concave with respect to the interface) and the parameter R0/Rwsinθc is greater than
+1; this includes a spherical tank as a special case.

2. When the walls are straight (e.g., cylinder or cone, Rw = ∞), the critical acceleration
depends only on the angle α and is otherwise independent of the contact angle.

3. The maximum critical acceleration occurs when the interface is flat (α = 90°).
These conclusions apply strictly only to cases when the liquid temperature is uniform.

When there is a temperature gradient in the liquid, there is also a surface tension gradient
(since surface tension decreases with temperature) and this can affect the stability of the

LIQUID
LIQUID

g

Figure 4.15.  Interface stability for a spherical tank.
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interface. For the example of a spherical tank, the capillary energy will be greatest when
the interface is near the cooler end of the tank and smallest when the interface is near the
hotter end. Thus, if the vapor bubble in zero-g is at the hot end of the tank, the critical
de-stabilizing acceleration is greater than zero, because to move the bubble towards the
cooler end requires an increase of the capillary energy, even though the gravitational
potential energy decreases just as for the isothermal case [DODGE AND GREEN, 1992].

Settling time estimates
When the bulk of the liquid in a tank has to be settled over the outlet, say, to start an
engine, the imposed acceleration must not only be large enough to de-stabilize the
interface but it must also be exerted for a long enough time period to move the liquid to
the desired location. Surprisingly little work has been devoted to the settling time
problem, so approximate estimates of the time are required in most cases.

Experiments have shown that the leading edge of a de-stabilized interface “falls”
at a rate nearly equal to the imposed acceleration [MASICA, ET AL, 1965]. Thus, one
estimate of the settling time is simply the time required for the liquid center of mass to
fall freely from its original position to its new position in the settled configuration,
multiplied by a factor of three or four to account for the fact that the liquid will initially
overshoot its new equilibrium position before coming to rest. Another way to estimate
the settling time is to combine the free fall time of the center of mass with the time
required for ten or so slosh cycles of the liquid in the new settled configuration. The
settling acceleration must be exerted for a time at least as long as the greater of these two
estimates.

An efficient method of settling the liquid is to “pulse” the thrusters by firing them
for a short duration (a fraction of a second) and then turning them off for a longer time
period [HOCHSTEIN, 1989]. The ratio of firing time to off time is called the “duty cycle.”
Duty cycles of one-tenth or so are used commonly. During the time between firings, the
liquid continues to fall with nearly a constant velocity. The total time required for
settling can be estimated approximately by assuming a constant settling acceleration
equal to the time-average of the pulsed acceleration [DODGE AND GREEN, 1992]. One
caution is that the time between thrusting firings must be short enough to prevent the
liquid from forming a new zero-g interface before the next firing; otherwise, the liquid
will tend to come to rest between firings, and the benefits of pulsing will be lost. The
time for a zero-g interface to form is discussed below. Settling as a means of managing
liquid in a tank in low-g is discussed in detail later in the chapter.

Zero-g interface formation times
The time required for an interface to obtain its zero-g configuration after a step reduction
in gravitational acceleration (e.g., after a settling thrust is turned off or when a test tank
is released in a drop tower) is of interest for reasons discussed above. The formation time
is sometimes called the reorientation time, although that term is also used for the time
required for a liquid to settle in a tank after an acceleration is imposed.

SIEGERT, ET AL [1964, 1965] studied zero-g formation time ts experimentally and
correlated the experiment results in the form:

σ
ρ=

3DKts (4.30)
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Values of the constant K are listed below for liquids having θc ≈ 0° for several common
tank shapes (for the annular tanks, D in Eq. (4.30) is R0 − Ri).

Cylindrical tank . . . . . . . . . . . . . . . . . . 0.15
50% full spherical tank . . . . . . . . . . . . 0.16
Annular tank:

Ri/R0 = 0.25 . . . . . . . . . . . . . . . . . . 0.15
Ri/R0 = 0.50 . . . . . . . . . . . . . . . . . . 0.10
Ri/R0 = 0.75 . . . . . . . . . . . . . . . . . . 0.42

The capillary energy of the initial high-g configuration can be considerably in excess of
the capillary energy of the final zero-g configuration, and the excess energy is
transformed into sloshing kinetic energy. The estimates given by Eq. (4.30) do not
include the time for the slosh waves to damp out, so an additional time of about five or
six slosh wave periods should be added to these formation time estimates.

Correlations specifically for cylindrical tanks have been determined
experimentally that are valid for any contact angle less than 90° [WEISLOGEL AND ROSS,
1990]. The results are summarized by the relation:
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where ν is the liquid kinematic viscosity, and the other parameters are defined as:
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Equation (4.31) includes the time required to damp the slosh waves after the zero-g
interface is formed.

4.5 Low-g Sloshing in Axisymmetric Tanks
In normal gravity, sloshing is controlled by the interaction of gravitational body forces
and inertial forces. In reduced gravity, the gravitational body force is weak, but surface
tension becomes important because it tends to restore the original configuration when a
liquid interface moves. Hence, liquid in a container in zero-g may still have a non-zero
sloshing natural frequency. Since the surface tension force is much smaller than the
normal gravitational or thrust-induced body force, the low-g slosh frequency is generally
much smaller than it is normal gravity.

Further, the fact that the surface tension restoring force is small implies that small motions of the
container can lead to large motions of the liquid. As a result, zero-g sloshing tends to be of large
amplitude, which makes the assumption of linearized motions employed in Chapters 1, 2, and 3 less
realistic than for normal, high-g sloshing. When the wave amplitude is large, the liquid motion is
dominated by inertia, as is indicated by the upper left hand quadrant of Figure 4.5, and hence, the natural
frequency of sloshing is not so important in analyzing the motions as it is for high-g sloshing. Low-g
motions in general thus have to be analyzed numerically, as for example, in NAVICKAS, ET AL [1986].
There are some instances, nonetheless, when the amplitude of the tank motion is itself small, such as
during station keeping of an orbiting spacecraft. For these cases, knowledge of the low-g sloshing
frequencies and dynamics is important.

General theory for an axisymmetric tank
The general theory for low-g sloshing given here is similar to the discussion in Chapter 1
for high-g sloshing. The tank shape and the equilibrium liquid configuration are assumed
to be axisymmetric. The liquid motions are assumed to be small, so the equations can be
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linearized with respect to the liquid
velocity and surface wave amplitude.
Viscous damping is neglected, so the
liquid motion is derivable from a
velocity potential φ. In contrast to
Chapter 1, only those slosh modes that
vary as the cosine of the angular
coordinate θ are considered here,
because, as was shown in Chapter 1,
only these modes produce a net force or
moment on the tank. Finally, only free,
unforced slosh motions are analyzed in
detail. The analysis of forced motion
follows directly from the free slosh
modes, but it is easier to compute the
forced motion dynamics by an equivalent
mechanical model. The geometry of low-g sloshing in an axisymmetric tank is shown in
Figure 4.16. The analysis follows that given by DODGE, GREEN, and CRUSE [1991]. The
main analytical difficulties arise from the boundary conditions at the curved free surface
and at the contact line.

Since the equilibrium interface shape z = f(r) can be highly curved and even “bent
over” the boundary conditions at the interface are best expressed in a surface normal
coordinate system s,n,θ where s is arc length measured from the tank centerline (s = 0
corresponds to r = 0), n is measured perpendicular to the interface, and θ is the angular
coordinate.

The potential must satisfy the Laplace equation (conservation of mass) within the
liquid:

V  volume,fluid  thein                02 =φ∇ (4.32)

Boundary conditions.   Since the liquid cannot penetrate the tank walls, the component of
the liquid velocity at the tank walls perpendicular to the walls must be zero:

W
n

  walls, theon     notation) vector in 0(or           0 =⋅φ∇=
∂

φ∂ n (4.33)

The velocity of the free surface must equal the liquid velocity at the free surface:

F
nt

 surface, free  theon              
∂

φ∂=
∂
η∂ (4.34)

where η is the slosh wave height measured in the n direction.
The liquid pressure p at the free surface is different from the gas pressure pg above

the free surface as a result of surface tension. The jump in pressure is given by pg − p =
2σH, where H is the mean curvature of the perturbed interface. In this linearized
formulation, the mean curvature is the sum of the mean curvature H0 of the equilibrium
axisymmetric interface and the perturbation to the curvature caused by the slosh wave. A
relation for H in terms of the slosh wave amplitude can be derived from differential
geometry:

LIQUID
θc

n

s
r

z

g

h(r)

η(n,θ,s)

Figure 4.16.  Schematic of low g sloshing in an
axisymmetric tank



4.  FLUID MANAGEMENT IN MICROGRAVITY

84

0
2

=






∇
∇⋅−∇=

F
F
F

H

where F(s,θ,n) = 0 is the equation of the perturbed free surface. After this relation is
linearized with respect to η, we find that the instantaneous mean curvature is the sum of
(a) the equilibrium mean curvature, (b) the deviation of the mean curvature for a constant
value of wave height η over the surface and (c) the deviation caused by the variation of η
over the surface:
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where r1 and r2 are the principal radii of curvature of the equilibrium free surface shape,
and ∇s is the Laplace operator expressed in the surface coordinates. H0, r1, and r2 can all
be expressed in terms of z = f(r) and its derivatives, where f(r) is the equilibrium free
surface shape. When the pressure jump is expressed in terms of the time-varying mean
curvature, the expression can be separated into a time-varying part and a time-invariant
part. The time-invariant part represents the pressure jump for the equilibrium free surface
shape, and so it cancels out. The final result is that the unsteady part of the pressure
condition at the free surface, which is derived from the unsteady Bernoulli’s equation
just as for the high-g slosh theory discussed in Chapter 1, is:
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(4.35)

where ze and re are the coordinates of a point on the
equilibrium free surface.(The terms that are squared in
this equation are equal to r1 and r2, respectively)

The wave shape must preserve the equilibrium
contact angle13. Since the slope of the tank wall may
change as the wave moves up the wall, determining the
correct contact angle condition is an involved geometric
problem. Figure 4.17 shows how the derivation is
accomplished analytically. The contact angle is
expressed in terms of the unit normal vectors at the wall
and the free surface:

nw ee ⋅=θccos

The unit vector wall normal is ew = cosθcen − sinθces.
When the surface moves, the unit vectors change by a
small amount ∆ew and ∆en. The change in the ew vector is
expressed in terms of the change in the angle αw of the
                                                     
13 This requirement must also be met for high-g sloshing. But for high-g sloshing, the effect of contact

angle is confined to a very small region near the wall, so the requirement can be ignored with little loss of
accuracy, as was assumed implicitly in Chapter 1.
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Figure 4.17.  Motion near the
contact line
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point on the wall in contact with the free surface when the free surface moves along the
wall a distance ∆ξ:

( )nsw eee cc
w

d
d θ+θ








ξ

αξ∆−=∆ sincos

Likewise, the change in the normal vector to the free surface is given by:
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Also, ∆s = ηcotθc and ∆ξ = η/sinθc. Therefore, when these relations are combined, the
linearized form of the contact angle condition cosθc = (ew +∆ew)•(en +∆en) reduces to:
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where sc is the total arc length to the equilibrium free surface contact point at the wall,
and ξ is the arc length coordinate measured along the tank wall. Equation (4.36) is
satisfied identically when θc = 0°.

As was mentioned earlier, the contact line is free when the contact angle does not change as the liquid
moves up and down; Eq. (4.36) applies only to this condition. For some liquids and tank wall materials,
the contact angle changes noticeably [DODGE AND GARZA, 1968; DODGE, 1988; CONEY AND MASICA,
1969]; this phenomenon was discussed earlier in the chapter and was called contact angle hysteresis or
dynamic contact angle. One way to include a changing contact angle in the analysis is to assume the
change is proportional to the amplitude of the wave height at the wall. However, there are little or no data
available on the value of the proportionality constant or how it varies with liquid properties and liquid
velocity, except for the special case when the proportionality constant is extremely large; the contact line
is then in effect pinned or stuck to the wall, so this condition is expressed as η = 0 at the contact line.

Equations (4.32) - (4.36) define the low-g sloshing problem for an axisymmetric
tank for the case when the contact line is free to move without restraint. We are
interested in solutions corresponding to unforced sloshing, so the time derivatives in the
equations can be replaced by iωn where ωn is the slosh natural frequency.

Methods of solution
Because of the analytical complications introduced by Eqs. (4.35) and (4.36), closed
form solutions of the equations are not possible in general. The most prominent
exception to this statement is a cylindrical tank with θc =  90° [e.g., REYNOLDS AND
SATTERLEE, 1964]; the equilibrium interface is flat for this case so the r and s coordinates
are identical; ze = 0; and Eq. (4.35) simplifies considerably. Furthermore, Eq. (4.36)
reduces to ∂η/∂r = 0 at the wall, which is the same condition as ∂φ/∂r = 0 imposed on the
velocity potential. The solution is given in terms of Bessel functions just as for high-g
sloshing; this solution will be discussed later in the section. But in most cases of interest,
an approximate or numerical solution is the only possibility.

General purpose computational fluid dynamics codes with a free surface capability
could be used to solve the low-g sloshing problem directly. But at this point in their
development (end of 2000), such codes do not simulate the surface tension forces at the
free surface accurately enough to make reliable predictions. They are, however, of great
utility when the tank motion is large and the liquid motions are dominated by inertia
rather than by surface tension. On the other hand, finite difference codes have been
written specifically to solve Eqs. (4.32) - (4.36) for several kinds of tank shapes and they
do give accurate predictions. Results from these computations will be summarized later
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in the section. One limitation of CFD codes is that the contact angle cannot be exactly 0°
because the computing cell then has two sides that lie on top of each other; thus, a small
but not exactly zero contact angle (generally 5°) must be used.

Another solution method is to construct the potential φ in terms of functions
ψi(r,z)cosθ that satisfy part of the problem [such as Eq. (4.32)]; the other equations are
then satisfied in some approximate way. The success of this method depends on the
choice of the functions ψi and how φ is made to satisfy the remaining equations.
Convergence to the true solution is more rapid and accurate when the remaining
equations are satisfied in an overall, integral sense. For example, the previous set of
differential equations can be shown to be the same as the set determined from a velocity
potential and free surface slosh wave shape that minimize the following integral [DODGE,
ET AL, 1991; CONCUS, ET AL, 1969]:
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Equation (4.17) is written in dimensionless variables, and F is the equilibrium free
surface and V is the liquid volume. The time dependence of the potential has been
assumed to be exp(iωt). The dimensionless variables in this expression are defined as:
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As usual, Bo = ρg(R0)2/σ and R0 is the characteristic dimension of the tank (e.g., radius).
The solution procedure starts by expressing the nondimensional potential in terms

of a series of trial functions:

( ) ( ) θψ=θΦ ∑ cos,,, zraZR ii (4.39a)

where the ai are numerical parameters to be determined. The wave amplitude Η(S,θ) can
also be expressed in terms of the ai and ψi by using Eq. (4.34):

( ) ∑ θ
∂
ψ∂=θΗ cos,
N

aS i
i (4.39b)

or by using an expansion in terms of ψi and another set of parameters bi. Convergence is
more rapid when Eq. (4.39b) is used for Η but sometimes the ψi are only known
numerically, so the normal derivative of ψi may not be available. These expressions are
substituted into the integrals, and the derivative of I(Φ,Η) with respect to each coefficient
ai is set equal to zero to minimize I(Φ,Η). In that way, a set of K linear equations can be
derived to determine the ai, where K is the number of terms retained in the series of Eqs.
(4.39). In matrix form, these equations are written as {[M1] − Ω2[M2]}[a] = 0, which is a
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standard eigenvalue equation that can be solved for the dimensionless natural
frequencies Ωn and eigenvectors ai corresponding to each Ωn.

The more of Eqs. (4.32) - (4.36) that can be satisfied by the trial functions ψi, the
better the convergence of the approximation to the true solution and the more that Eq.
(4.37) can be simplified. The ψi should always be chosen to satisfy Eq. (4.32), perhaps
only numerically, however. If in addition, they satisfy the wall boundary condition, Eq.
(4.33), and the expression for Η given by Eq. (4.39b) is utilized, only a few terms in the
integral have a value different than zero. The approximation then reduces to finding the
ai and Ω that satisfy:
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for j = 1,2,…K, where the integral is evaluated on the equilibrium free surface.
Integration with respect to θ has already been performed. The subscript c means that a
variable is to be evaluated at the equilibrium contact line. If θc = 0°, the last summation
is equal to zero identically and can be ignored.

For a cylindrical tank and fill levels for which the equilibrium free surface intersects the tank walls rather
than the top or bottom, the equilibrium free surface does not bend over on itself. Hence, a standard r,θ,z
coordinate system can be used since double-valued slosh wave functions cannot occur. For this liquid
configuration, Eq. (4.40) can be simplified and rewritten as:
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where F(R) is the dimensionless equation of the equilibrium free surface and FR is its derivative with
respect to R. The normal derivative of ψ on the equilibrium free surface can be evaluated simply as
∂ψ/∂Z − (FR)∂ψ/∂R.

The general theory and many analytical approximations to the solutions of the governing
differential equations are discussed at length in several text books [MYSHKIS, ET AL, 1987,
ANTAR AND NUOTIO-ANTAR, 1993].

Slosh forces and torques.  In high-g sloshing, an unsteady slosh force is caused by the
liquid pressure acting on the wetted walls. In low-g, there is an additional force caused
by the unbalanced surface tension force at the contact line, and the pressure force itself
includes a component that is negligibly small for high-g conditions.

The unsteady pressure is given by the linearized Bernoulli’s equation, Eq. (1.3), so
the pressure contribution to the lateral slosh force is:
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Here, fc is the equilibrium free surface height at the contact line; η0 = ηc cotθcsinα is the
vertical slosh height at the contact line, where ηc is the slosh height at θ = 0°; rw is the
radial coordinate of the wall; and z = −zB is the coordinate of the tank bottom at r = 0. As
before, PL0 is the liquid pressure at the free surface at the axis of the tank. Integrating this
expression and then linearizing gives:
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The first term on the right term is caused by the pressure jump PL0 − ρgfc at the contact
point. It is a function of the surface
tension and the curvature of the
equilibrium free surface.

During sloshing, the contact line
is displaced and a net surface tension
force is created that “pulls” on the
wall. Figure 4.18 shows how this force
is computed. The surface tension force
acting on an element ∆s of the contact
line is σ∆s, and the component of this
force that lies in the plane of the wall is
(σ∆s)cosθc. The line element ∆s is
tilted; the tilt depends on the slosh
wave amplitude and how the amplitude
varies with angular position. By computing the tilt in terms of the slosh wave amplitude,
the x-component of the force is found to be given by the expression
(σ∆s)cosθc(∆ηcotθc/rw∆θ)sinθ. The element length ∆s is equal to rw∆θ to the first order.
Hence, the net contact line force in the x-direction is computed as:
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The other components of the unsteady surface tension force at the wall integrate to zero.
In dimensionless variables, the total lateral slosh force is therefore:
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where κc is the dimensionless mean curvature of the equilibrium free surface at the
contact line. The slosh torque can be computed in a similar way, as outlined in Chapter
1. Equation (4.42) shows clearly that there is a component of the force that depends on
the slosh wave height directly, which is not negligible when Bo is small. Most
investigators have apparently not recognized this fact, which makes their computations
of the slosh force questionable, as well as the parameters of any equivalent mechanical
model derived from the slosh force and torque.

∆η

r   ∆θw∆s

η

r w
θ

equilibrium
contact line

x

σ ∆θ

slosh wave

Figure 4.18.  Unbalanced surface tension force of a
moving contact line
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Equivalent mechanical model parameters
Just as for high-g sloshing, linear low-g sloshing can be represented by an equivalent
mechanical model composed of, for example, a set of pendulums and a rigidly attached
mass. In low-g, however, the pendulum or spring-mass must account for the effects of
surface tension. The method used to determine the model parameters is discussed below.

From the previous development [Eq. (4.38)], we can conclude that the natural
frequency of each slosh mode is expressible in the form:













ρ
σ+Ω=ω 3

00

22

RR
g

nn (4.43a)

where Ωn is the dimensionless eigenfrequency obtained from the solution of the low-g
theory. The natural frequency ωpend of a pendulum that is attached to its pivot point by a
torsional spring kθ is given by:
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where L is the pendulum length and m is the pendulum mass. By comparing Eqs. (4.43a)
and (4.43b), it is evident that such a pendulum will simulate the low-g slosh frequency if
L and kθ are selected as::
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for the nth mode, The pendulum mass can be determined by comparing the model and
slosh ratios of the amplitudes of the force F and the kinetic energy KE. For a harmonic
motion at frequency ω, the effective oscillating mass is equal to the ratio F 2/2KEω2. For
the pendulum, this ratio is mn. For the sloshing liquid, the ratio can be found from the
velocity potential. By equating the two ratios, the slosh mass of the model is found to be:
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The pendulum attachment point is determined from the slosh torque expression. The
torsional spring has to be attached to the tank walls by “sliders” so that for an angular
displacement of the tank, only the component of the tank motion normal to the tank walls
tends to rotate the spring.

Cylindrical tank
Because a cylindrical tank is a relatively simple shape and is widely used in spacecraft
applications, it has been the subject of several analytical and experimental investigations
of low-g sloshing [SATTERLEE AND REYNOLDS, 1964; CONCUS, CRANE, AND SATTERLEE,
1967; DODGE AND GARZA, 1968; SALZMAN AND MASICA, 1969; BAUER AND EIDEL, 1990,
among others]. Only SATTERLEE AND REYNOLDS [1964] considered contact angles other
than 0°. All the predictions of the fundamental slosh frequency agree fairly well over the
range of the common Bond numbers. The results of CONCUS, CRANE, AND SATTERLEE
[1967], which were obtained by a finite difference computer code, cover the widest range
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of Bo, so their results are summarized
here. The results strictly apply only
for the value of θc = 5° used in the
numerical computations, but this is
close enough to zero that the natural
frequency predictions can be used for
a zero degree contact angle.

Natural frequency.  The dimensionless
natural frequencies for the first two
modes are shown as a function of
Bond number in Figure 4.19 for a
tank with a liquid depth h > 3R0. As
can be seen, for Bo > 10, the
predicted natural frequencies
approach the high-g values given in
Chapter 1. The first mode frequency
is well correlated by the simple
relation:
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For Bo << 1, the natural frequency is thus practically independent of Bo and approaches
the value 1.61σ/ρ(R0)2. When h < 3R0, the natural frequencies can be computed
approximately from the values shown in the figure or from Eq. (4.46a) by multiplying
them by the depth factors from high g theory, namely the square root of tanh(1.841h/R0)
for the first mode and the square root of tanh(5.331h/R0) for the second mode. The
theoretical natural frequency predictions have been confirmed by numerous drop tower
experiments [SALZMAN, ET AL, 1967; SALZMAN, ET AL, 1968; SALZMAN AND MASICA, 1969].

For θc = 90°, the frequency can be predicted exactly because the free surface is flat
[REYNOLDS AND SATTERLEE, 1964]. The result is:
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where λn are the roots of dJ1(r)/dr = 0, or λn = 1.841, 5.331, 8,536,. When the
acceleration g is reversed in direction with a magnitude such that Bo < −(λ1)2 = −3.386,
the frequency is imaginary; this means that the interface becomes unstable when the
imposed acceleration exceeds −3.386ρ(R0)2/σ. This is the same result for interface
stability found previously by the thermodynamic stability method.

Slosh mass.  With the exception of the results of DODGE AND GARZA [1968], the predicted
slosh forces and the slosh masses of the mechanical model have apparently been
computed in error, because of the neglect of the additional terms in Eq. (4.45). The
predictions of DODGE AND GARZA [1968] were based on an approximate analytical
method that converged well only for Bo > 5, but their analysis shows that the slosh mass
decreases slightly as Bo decreases, and for Bo = 10, the mass is about 10% smaller than
the high-g value.
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Figure 4.19.  First and second slosh frequencies for a
cylindrical tank for θc ≈ 0°, with h/R0 > 3
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Spherical tanks
A spherical tank is also widely used in applications, so it has also been the subject of
several low-g sloshing investigations [CONCUS, ET AL, 1969; DODGE AND GARZA, 1970;
CONEY AND SALZMAN, 1971; DODGE, GREEN, AND CRUSE, 1991]. All the natural frequency
predictions generally agreed within 10%, although the solution methods varied from
finite difference computer programs to semi-analytical exact methods.

Natural frequency.  The first and
second mode natural frequencies
are shown in Figure 4.20. The
first mode frequency is zero for
Bo ≡ 0; this result is analogous to
the fact that a liquid interface in a
spherical tank is neutrally stable.
The theoretical predictions as a
function of Bo and θc = 0° have
been confirmed by drop tower
experiments [CONEY AND
SALZMAN, 1971].

Slosh mass.  Most investigators
neglected the additional terms in
the slosh force relation, Eq.
(4.45), so their predictions of the
slosh mass of an equivalent
mechanical model are in error.
The predictions of DODGE, GREEN,
AND CRUSE [1991] are believed,
however, to be correct. Their predictions are shown in Table 4.1 in terms of the ratio of
slosh mass m1 for the fundamental mode to the mass of liquid mliq in the tank. Since the
liquid does not have a
fundamental slosh mode for Bo =
0, the tabulated results start with
Bo =1. As can be seen, the slosh
masses for small Bo are
considerably smaller than the
masses for the Bo = ∞ high-g
limit.

Spheroidal tanks
Tanks that have an oblate spheroidal shape (i.e., a shape formed by rotating an ellipse
around its minor axis) are used in some satellite designs, and the low-g sloshing in such
tanks has therefore been the subject of analysis and testing by several investigators
[CONCUS, ET AL, 1969; DODGE AND GARZA, 1970; CONEY AND SALZMAN, 1971].

Natural frequency.  Figure 4.21 shows the natural frequencies of the first two modes for an
oblate spheroidal tank formed by an ellipse having a ratio of minor to major axis of 0.733
(eccentricity of 0.68). The curves for Bo = 0 and Bo = 1 do not cover the low fill fraction
range, because the interface becomes annular for small Bo (Figure 4.12). The solution
method also did not converge well for high fill levels. Frequencies for other minor to
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Figure 4.20.  First and second mode slosh frequencies for
a spherical tank, for θc = 0°

Table 4.1  Slosh mass ratio, m1/mliq, for a spherical
tank with θc = 0°

Bond Number
Fill Level, % 1 2 ∞

25 0.210 0.380 0.745
50 0.200 0.250 0.580
75 0.130 0.168 0.269
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major axis ratios are given in
CONCUS, ET AL [1969]. The
theoretical predictions have been
validated by drop tower
experiments [CONEY AND
SALZMAN, 1971].

Slosh mass.  There are no reliable
predictions or measurements of
the slosh force or slosh mass. By
analogy with the spherical tank
results given above, it is
expected that the slosh mass
under reduced gravity conditions
will be somewhat less than for
high-g conditions.

Other axisymmetric tank shapes
Some data on low-g slosh
natural frequencies have been
obtained for other axisymmetric
tanks, for example, an annular cylinder tank [LABUS, 1969] and cylindrical tanks with
inverted and upright hemispherical or ellipsoidal bottoms [DODGE AND GARZA, 1968;
SALZMAN AND MASICA, 1969]. The data are limited in fill level range and Bond number
and so are not summarized here. SNYDER [1999] discusses the general case.

Viscous slosh damping in low gravity
Viscous damping of slosh waves in low-g is somewhat greater than it is in high-g
because of the greater wetted area and presumably because of the smaller fraction of the
liquid mass that participates in the sloshing. Damping correlations have been determined
by a number of investigators [for example, CLARK AND STEPHENS, 1967; DODGE AND
GARZA, 1968, 1970; SALZMAN AND MASICA, 1969] and predicted theoretically [for
example, BAUER AND KOMATSU, [1998]. Most of the correlations and analyses apply only
to slosh waves that have a free contact line; contact lines that are stuck increase the
damping significantly [DODGE AND GARZA, 1968l VAN SCHOOR AND CRAWLEY 1995].

For cylindrical tanks with Bo > 5 and liquid depths greater than the tank diameter,
DODGE AND GARZA [1968] found that the damping ratio (fraction of critical damping) is
correlated by an expression that involved both viscous and Bond number parameters:
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where ω1 is the low-g slosh frequency. The second form Re2 of the inverse Reynolds
number defined in Eq. (2.5) is used in this correlation. The numerical factor 0.97
corresponds to the correct high-g limit of 0.83 in Eq. (2.7b) when the high-g relation ω1 =
(1.84g/R0)0.5 is substituted into Eq. (4.47). Using drop tower tests, SALZMAN AND MASICA
[1969] extended this correlation to Bo = 0 and found that the damping was independent
of Bo for Bo < 1; their correlation is:
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For Bo = 5, the numerical factor in Eq. (4.47a) is 4.0, so these two relations can be
merged fairly smoothly in the region 1 ≤ Bo ≤ 5. The damping increases somewhat as the
depth decreases, just as for high-g sloshing.

A long duration experiment conducted in space aboard the Space Shuttle generally
confirmed the drop tower data [VAN SCHOOR AND CRAWLEY, 1995]. The in-space data
were obtained from force response data, rather than from free decay tests as was used in
SALZMAN AND MASICA [1969] but were still within 10% of the drop tower data.

Damping data for spherical and spheroidal tanks are very sparse. The only
extensive damping tests were acquired by DODGE AND GARZA [1970] and their tests were
limited to Bo > 10. They found that the damping depended on both Bo and the inverse
Reynolds number, just as for a cylindrical tank, but the data sets were not extensive
enough to develop reliable correlations. For a spherical tank, the minimum damping
occurred for a half full tank, which is also the case in the high-g limit, and the damping
increased substantially for either smaller or larger fill levels.

4.6 Fluid Management Considerations in Low Gravity
Positioning liquid at a desired location in a spacecraft tank is not a straightforward task
in low-gravity. During thrusting, the liquid location is determined by the acceleration-
induced body forces, but in low-gravity, it is determined by the interaction of surface
tension forces and body forces resulting from various small accelerations. If the liquid
location were clearly dominated by surface forces, it would be relatively simple to make
sure that the liquid is always positioned in a desired location. However, surface tension
forces are so small for any reasonably size tank that random accelerations and vibrations
make the location of the liquid practically indeterminate. Consequently, we cannot be
sure, for example, that liquid will be over the tank outlet when it is desired to restart an
engine or supply liquid to some process. Likewise, we cannot be sure that gas will cover
the tank vent when it is desired to release gas to control tank pressure. Some means must
therefore be employed to “manage” the liquid and gas in a spacecraft tank so that the
liquid and gas are in the desired locations.

Liquid settling and gas venting
As was discussed in Section 4.4, settling or “reorienting” liquid over the tank outlet by
the use of small thrusters is one way to make sure that liquid is over the tank outlet and
that gas covers the tank vent. Many space vehicles use settling to manage liquid in low g.

Settling thrusters have to be supplied with propellant by some method that works
in low gravity. One common method is to use “cold gas” thrusters that eject pressurized
gas from a separate tank. In some cases, the acceleration is too large for efficient settling;
this might be the case, for example, when the primary purpose of the thrusters is for
attitude control. The liquid then falls to the bottom of the tank at a high velocity and
rebounds to form a geyser [SALZMAN AND MASICA, 1967; SALZMAN, ET AL, 1973] or else
circulates within the tank for a long time. Generally, for best settling, the liquid leading
edge velocity VL (computed as if in free fall for the imposed acceleration) should be
small enough to give a Weber number We = ρR0(VL)2/σ of about ten [GRAYSON, 2000].

If We > 10, pulsed settling should be used, in which the thrusters are alternately
fired for a short period and then turned off for a longer period, for many cycles. The
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time-average We can be made to be less than ten by this process, and considerably less
propellant is needed to settle the liquid [HOCHSTEIN, 1989; PATAG, 1988]

Tests have shown that ring baffles in the tank drastically change the flow pattern
during settling but have only a minor effect on the time required to collect the liquid over
the tank outlet [SALZMAN, ET AL, 1973].

Gas sometimes has to be vented from a spacecraft tank to control tank pressure.
Some of the passive methods described later in this chapter, which are used to ensure
that liquid is located over the outlet, also enable the venting of liquid-free gas. When
these passive methods are not available, liquid settling must be used. Other possibilities
include placing non-wetting screens over the vent to allow gas to flow through but not
liquid [SMITH, LI, AND CIMA, 1965]; dielectrophoresis; and high frequency acoustic waves
that “push” liquid away from the vent and gas towards it. At present, these methods are
experimental and have never been tested in an actual spacecraft application.

Outflow and inflow phenomena
Resupply of liquids on orbit will be a key element of some future space operations. For
that reason, the problems of low-g liquid inflow and outflow have been  investigated by
experiments and analyses. The results of these investigations suggest that flow rates will
have to be considerably less than are commonly used in normal gravity.

Outflow and suction dip.  When a tank is drained through a central outlet, a “dip” is formed
in the interface at low liquid levels; the dip is caused by the lower pressure near the
center resulting from the inward acceleration
of liquid toward the drain. Figure 4.22
illustrates schematically this phenomenon of
“suction dip” for both normal and low-g
conditions, for a case when the outflow is
driven by a pressure difference between the
tank and the external receiver. For normal
gravity conditions, the body forces are
relatively large compared to the drop in
dynamic pressure at the center, so the dip is
relatively small. Under weightless conditions,
however, only the surface tension force is
available to smooth out the interface, and the
dip becomes fairly large [NUSSEL, ET AL, 1965;
BHUTA AND KOVAL, 1965]; hence, a significant
volume of liquid may be left in the tank at the
time when the dip uncovers the drain. For
example, for a cylindrical tank with a flat
bottom, drop tower experiments have shown
that the amount of liquid left in the tank when
gas is first ingested in the outlet is as much as
74% of a reference cylindrical volume having a
depth equal to the tank diameter [ABDALLA AND BERENYI, 1969]. Even when the outflow
was reduced to make We as small as unity, the residual liquid volume was about 20% of
the reference volume. (Here, We = ρQ2/σ(R0)3 where Q is the volumetric outflow rate.)

Placing a small baffle above the drain can reduce the residual volume slightly; for
example, for a disk having a radius equal to 0.485 of the tank radius and located one to
two disk radii above the outlet, the residual volume for large outflow Weber numbers

high - g

low - g

Figure 4.22.  Interface shape during
outflow in normal and low-g conditions
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was found in the tests to be reduced from 74% to about 58% of the reference volume
[BERENYI, 1970]. Larger disks were found to yield more improvement, but even when the
disk radius was 98% of the tank radius the residual volume was still almost 35% of the
reference volume for large Weber numbers. The residual volumes were somewhat lower
when the tank bottom was hemispherical, since the interface shape then conformed more
closely to the tank shape. Even so, small Weber numbers were required to make the
residual volume small.

When the gravitational field is small but not exactly zero, another type of problem
also becomes important, namely choking at the outlet. The choking is similar to choking
of a compressible fluid at an orifice in a pipe. The velocity of the free surface waves here
is analogous to the velocity of sound in the compressible flow case, and the Froude
number is analogous to the Mach
number. Figure 4.23 illustrates the
choking phenomenon. When the flow
velocity over the lip of the drain
becomes critical (i.e., the Froude
number is equal to unity), the flow rate
cannot be increased further. Since the
Froude number is V 

2/gh0, and the
outflow rate Q is approximately
V(πdh0) where d is the diameter of the
drain, the maximum or choked flow
rate is about Qmax = πdh0(gh0)0.5.
Similarly, if the outflow rate is fixed,
the drain will become choked when the depth over the drain falls below (Q2/π2d2g)1/3. In
low gravity, the critical depth h of the liquid in the tank can be rather large. Assuming
that the rate at which the liquid level falls is slow compared to the liquid velocity over
the drain, one-dimensional quasi-steady theory can be used to estimate the critical value
of h. The gravity-driven velocity is equal to [2g(h-h0)]0.5 and at the critical point this must
be equal to (gh0)0.5. Thus, the critical depth h is 1.5 times h0. These relations have been
verified by experiments [GLUCK, ET AL, 1965]. The residual volume when the outlet
becomes choked can be estimated from h and h0.

Drain vortex.  A vortex may form over the drain in low or normal gravity as a result of
Coriolis and viscous effects or from rotary sloshing. The vortex accentuates the suction
dip, especially in low gravity, as indicated schematically in Figure 4.22. Fortunately,
simple cross-type baffles placed over the drain will prevent the formation of a vortex
[KAMEL, 1964]. Even the disk-like baffle described previously, which was meant to
diminish suction dip, is effective in eliminating the vortex. The radial length of the arms
of a cross-type baffle should be at least twice the diameter of the drain, and the height of
the arms should also be at least twice the drain diameter.

Liquid inflow.  Re-filling tanks in reduced and zero-gravity is not without problems related to
making sure that the inflowing liquid accumulates in a pool. Drop tower experiments
have shown that the interface remains stable and the incoming jet of liquid remains in the
vicinity of the interface when the Weber number is less than about 1.3 [SYMONS, ET AL,
1968; SYMONS, 1969]. The Weber number here is defined as ρ(Ri)2(Vi)2/2σRj, where Ri is
the radius of the inlet, Vi is the velocity of the liquid in the inlet line, and Rj is the radius
of the liquid jet at the liquid-vapor interface. When the Weber number exceeded 1.3 in
the tests, the incoming jet formed a geyser that moved toward the other end of the tank,
and only a small quantity of liquid was collected in the bottom of the tank, at least when

h ho

V

Figure 4.23.  Simple model for estimating the onset
of drain choking
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the liquid depth in the tank was no
greater than about ten inlet
diameters. When the liquid depth
exceeded about ten inlet diameters,
the jet velocity could be increased
somewhat. Figure 4.24 (adapted
from the photographs of SYMONS
[1969]) illustrates these phenomena
of stable and unstable inflow in
zero-g. In these tests, the inlet jet
spreading angle was less than 10°.

Similar inflow behavior has
been observed in much longer
duration tests conducted aboard the
Space Shuttle [DOMINICK AND
DRISCOLL, 1993]. The tank was a
sphere, and it contained a set of
screened channels to permit gas-free outflow (which had no effect on the inflow
phenomenon discussed here). The inlet line was slightly off-center to accommodate the
channel outflow manifold. A perforated baffle was placed over the inlet line to deflect
the inlet jet. The inflow was supplied from a pressurized tank that used a positive
displacement diaphragm to transfer liquid to the spherical tank at a measured rate. The
Weber number of the tests was varied
from about 0.6 to 5.2. Figure 4.25
illustrates the main observations from the
tests. The baffle deflected the inflow
toward the walls, and a liquid film
collected around the inlet and then
climbed the walls. Eventually the liquid
collected near the top vent, and a
spherical bubble of gas was formed. As
more liquid was collected, the diameter
of the bubble decreased. Because of the
off-center inlet and the fact that the
bubble did not attach to the top of the
tank, liquid eventually covered the vent
line. At that point, the vent was closed,
and the filling proceeded until the tank
pressure became equal to the supply tank
pressure. The fastest filling rate and
maximum filling percentage occurred when the inlet Weber number was near the
stability limit discussed in the previous section. Note that a cylindrical tank is better
suited to low-g filling than a spherical tank since the interface does not bring liquid as
quickly to the top.

Larger inflow rates have been shown to be feasible if the tank contains a set of
vanes similar to those shown later in Figure 4.31. Final fill fractions of 95% or more
were obtained routinely in these Space Shuttle experiments [DOMINICK AND TEGART,
1994]. In additions, the vanes were effective in allowing gas-only venting [CHATO, 1997].

inflow

stable
jet

inflow

unstable
jet

Figure 4.24.  Stable and unstable inflow to a tank in
zero gravity

screen
acquisition

device

inlet

perforated
baffle

vent
spherical

ullage bubble

Figure 4.25.  Typical results of in-space tank
filling tests; fill volume about 70%
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Effects of cryogenic liquids.  The outflow and inflow tests discussed above were conducted
with so-called “storable” liquids that have a vapor pressure which is much lower than the
tank pressure. When the liquid is a cryogen, or any other liquid for which the vapor
pressure is near the tank pressure, refilling a tank is more difficult because some part of
the liquid flashes to vapor near the start of the refilling. The vapor generally has to be
condensed or vented in some way to allow the filling to proceed efficiently [KRAMER,
1998]. Problems specific to cryogenic
liquids will be discussed later in the
chapter.

4.7 Propellant Management and
Liquid Acquisition Devices

It is not always possible or weight-
efficient to settle the liquid before
initiating a liquid outflow. Instead,
many spacecraft use passive
propellant management devices
(PMDs), which are also called liquid
acquisition devices (LADs), to capture
some part of the liquid and eliminate
the possibility that random
accelerations and other disturbances will move the liquid away from the outlet.
Typically, the devices are made of fine mesh screens or perforated sheet metal. Figure
4.26 shows how a simple fine-mesh
screen PMD extending across the tank
cross section can retain liquid over the
outlet. When the liquid is subjected to
an acceleration a that would make the
liquid run toward the top of the tank,
the strong capillary forces in the screen
pores prevent the lower liquid from
flowing out through the screen. Thus,
this part of the liquid stays in contact
with the tank outlet. However, when
the liquid level is below the screen,
even the lower liquid can move away from the bottom, so a series of such screens would
be necessary for effective control at all liquid levels.

Figure 4.27 shows a more sophisticated application of screens, which was used on
the AGENA upper stage vehicle. The sump at the bottom of the tank was separated from
the main propellant tank by a conical screen “trap”. The trap contained enough liquid to
restart the engine, after which the thrust-induced acceleration settled the liquid over the
trap, through the screens and into the outlet, and refilled the trap.

These two fine-mesh screen devices are examples of propellant management devices.
The primary objective of a PMD is to keep the tank outlet covered with liquid whenever
outflow is required. Secondary objectives might include controlling the center of mass of
the liquid, minimizing sloshing, and allowing the venting of liquid-free gas.

fine-mesh
screen

a
liquid liquid

liquid

Figure 4.26.  Screen baffle for low-g liquid control
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Figure 4.27.  AGENA PMD sump and trap
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Type of propellant management devices
Propellant management devices use surface tension forces to maintain the liquid at a
specific location. They can be
classified into three general types
described as follows [ROLLINS, ET AL,
1985]:

• Partial communication devices.
These devices hold only a fraction
of the liquid over the outlet, and
the remaining liquid is free. They
are used when a space vehicle must
maneuver considerably or when
many small engine firings are
needed. If the thrust acceleration is
sufficient to settle the liquid, the
PMD can be designed to be
refillable and its volume can be
made just large enough to provide
gas-free propellant to start the
engine each time (with a margin).
Figure 4.28 shows a schematic of
an idealized refillable, partial
communication PMD, composed of
a trap whose walls are made of fine
mesh screen and a vent pipe to allow gas to vent during refill when the trap is
submerged in liquid. If the thrust acceleration is not sufficient to settle the liquid, the
PMD volume must be large enough to provide gas-free liquid for all the operations.
Figure 4.29 shows a schematic of an idealized non-refillable PMD. Each
successively lower volume of liquid is emptied in turn, with the exposed screen
preventing the entrance of gas from the empty volume just above it. Because of their
relatively small size, partial communication PMDs can be made stable (i.e., retain
liquid) against large acceleration disturbances.

• Total communication devices.  These PMDs are designed to establish a flow path
from the bulk liquid to the outlet at all times. Since, as was discussed earlier, the
liquid tends to remain bound to the
wall, common forms of total
communication PMDs include
flexible bladders that cover the free
surface (discussed previously in
Chapter 3) and flow channels or
galleries near the wall. Figure 4.30
illustrates a gallery PMD. The flow
channels (galleries) are all
connected to a manifold at the tank
outlet. As long as at least one of
the channels remains in contact
with the bulk liquid, liquid will
flow from the bulk into that

gas

gas

liquid

fine-mesh
screen

tank
wall

Figure 4.29.  Schematic of non-refillable PMD

gas

liquid

standpipe to vent
gas during refill

tank
wall

Figure 4.28.  Schematic of idealized refillable PMD
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screened
windows

outlet
manifold

Figure 4.30.  Example of gallery PMD
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channel and thence to the outlet.
Capillary forces prevent gas from
being driven into the channels that
are not in contact with bulk liquid.
The figure shows channels made of
sheet metal with small holes
covered with a fine-mesh screen.
Another common design employs
channels of a square cross section,
made of sheet metal on three sides
and with a fine-mesh screen for the
fourth side, usually the side nearest
the wall. Because of their large
size, total communication PMDs
are only stable against moderate
accelerations and will admit gas under large accelerations.

Another type of total communication PMD uses vanes connected to a standpipe to
maintain a path between the bulk liquid and the outlet. Figure 4.31 illustrates a
typical “sponge” PMD made of many such vanes [DOWDY, ET AL, 1976; JAEKLE, 1993].
By tapering the open area of the vanes, the liquid is “wicked” to the standpipe.
Because the interfaces are large, the liquid position is relatively unstable, so vane
PMDs are used only when disturbing accelerations are small, such as for deep space
probes. Large thrusting accelerations do not create a problem, however, because the
vanes will refill after the thrusting stops.

• Total control devices.  These PMDs hold all the liquid over the outlet. They are
effectively a non-refillable, partial control PMD that occupies the entire tank
volume. Their main use is with vehicles where slosh control is a dominant concern.

Traps, galleries, vanes and sponges will be discussed in more detail later. Since
most PMDs employ fine-mesh
screens or perforated plates, the
design principles of screens and
plates are discussed first.

Design characteristics of fine mesh
screens and perforated plates

The most important PMD-related
characteristics of a screen or
perforated plate are that they (1) can
withstand a pressure differential
from the gas side to the liquid side
and (2) can wick liquid from wet
areas to dry areas.

Screen geometry.  The pressure and
wicking characteristics of a screen
depend on the geometry of the
screen mesh. The screens used in
space applications are usually either
of the “plain” or “dutch” weaves.

communication
channel

vane
assembly

pressure/vent port

outlet

Figure 4.31.  Example of a sponge PMD
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weave fine-mesh screens
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Figure 4.32 shows the geometry of these weaves. Other details of the screen weaves will
be summarized later.

A plain square weave is similar to an ordinary window screen weave; screens are available with weaves
of up to 400 X 400 wires per inch, which has a pore size of 0.0015 inch (38 microns). Dutch and twilled
dutch weaves use interwoven wires and have little open area. Plain dutch screens are available in weaves
up to 50 X 250 wires per inch (pore size of 0.0022 inch = 56 microns). Twilled dutch screens are
available up to 325 X 2400 wires per inch (pore size of 0.00002 inch = 5 microns)

Bubble point pressure.  The maximum possible gas-to-liquid pressure differential that a
screen or perforated plate can withstand is a function of its pore size and the liquid
surface tension σ. This pressure is called the “bubble point pressure” PBP and is given
analytically by the expression:

BPBP DP σ= 4 (4.48)

where DPB is the effective pore diameter. It is
assumed that the liquid wets the material so
that the contact angle is 0°; otherwise the
expression must be multiplied by cosθc.

The bubble point pressure is measured with an
apparatus similar to that shown schematically in
Figure 4.33 [BLATT, 1970; DODGE AND BOWLES,
1984]. A sample of the screen is stretched over the
open end of a box and submerged to a depth of 3/8
inch (0.95 cm) in a reservoir of a reference liquid
(generally isopropyl alcohol, although any liquid
that wets the screen can be used). The box is
pressurized until an air bubble breaks through the
screen. The bubble point is the breakthrough
pressure, including the 3/8-inch hydrostatic head.
The effective pore diameter is computed from the bubble point data by using Eq. (4.48). Bubble point
data will be presented later. There is no corresponding “droplet point” pressure for a pressure difference
from the reservoir to the gas.

Wicking.  Wicking in a fine-mesh screens can be important both in obtaining and maintaining
a filled PMD. High wicking rates may be undesirable for a refilling or filling application
since the wicking liquid might seal the device before complete filling is obtained.
Conversely, high wicking rates may be needed for heat pipe applications. For a cryogenic
tank, wicking can be effective in preventing the drying out of screens by evaporation.

There are two important wicking-related phenomena: (1) the capillary suction
pressure that drives the wicking, and (2) the friction-factor resistance of the screen to
wicking. The suction pressure Pw is a fraction of
the bubble point pressure: Pw = Φwσ/DBP, where
Φw is a screen characteristic. The wicking friction
parameter Cw also depends on the screen weave.
The wicking velocity is determined by analogy to
laminar flow in a channel of height equal to Bs, the
screen thickness; the velocity expression is:






 σ
µ

Φ=
BPLw

sw
w DLC

BV
2

                       (4.49)

where L is the screen length in the wicking
direction and µL is the liquid viscosity. Data for Φw
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Figure 4.33.  Bubble point test set up
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4.  FLUID MANAGEMENT IN MICROGRAVITY

101

and Cw for various screen weaves will be presented later.
Figure 4.34 shows schematically how to measure the wicking suction pressure [DODGE AND BOWLES,

1984]. A sample of the dry screen is stretched between two clamps. One end of the screen is submerged
in liquid (e.g., isopropyl alcohol) contained in a reservoir. (The screen is held in a vertical position by a
support that is not shown in the schematic.) To start the test, liquid is added to the reservoir from the
liquid supply until the lower clamp is just submerged. At that point, liquid will wick up the screen. If
necessary, liquid is continuously added to ensure that the lower clamp remains submerged. The wicking
height is measured when it has reached a maximum. (For liquids that evaporate easily, the measurements
must be done rapidly.) Since the
wicking suction pressure Pw at the wet-
dry interface supports the hydrostatic
head of the liquid in the screen, the
suction pressure can be computed from
the wicking height Hw:

wL
BP

w
w gH

D
PP ρ=

σΦ
=−0

where P0 is atmospheric pressure. The
measurements determine the factor Φw;
in effect, the wicking pore diameter is different than the bubble point pore diameter, unless Φw = 4.

The wicking friction-factor resistance of a screen is measured by a modification of the apparatus used
to measure the wicking suction pressure. Figure 4.35 shows the apparatus schematically. A sample of the
dry screen is held between two clamps, just as for the suction pressure measurement, but for this test the
screen is horizontal, with the end in the reservoir stretched over a knife edge to create a definite starting
location for the wicking. To begin a test, liquid is added to the reservoir from the supply until the liquid
surface is level with the knife edge. The location L(t) of the wicking interface is then measured as a
function of time. (The screen is actually tilted very slightly, with the end in the reservoir below the
exposed end, to prevent liquid from flowing along the screen by gravity.) The friction factor resistance of
the screen is determined from the test data by using Eq. (4.49):

( )
20
s

Lww
B

dtdLLCPP µ=−

where inertial effects are ignored as being small compared to viscous effects. The dimensionless factor
Cw accounts for the geometry of the screen weave and the fact that the effective open thickness of the
screen is not Bs. By integrating this relation with respect to time, the wetted length of the screen is found
to be:
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The L vs. t best fit to the data is therefore a straight line when L is plotted against the square root of
elapsed time. The Cw parameter is determined from the slope S of this plot by using the preceding
relation:
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For some screen weaves, only the ratio Cw/Φw has been measured, but this ratio is
usually sufficient to compute wicking velocities and mass flow rates.

The wicking flow rate itself cannot be computed from Eq. (4.49) since the actual
open area of the screen cross section is not known. However, the effective open
thickness Bfs of the screen can be related conceptually to the actual screen thickness Bs
by imagining it to be the width of an ordinary flow channel, so that:

wsfs CB.B 4643= (4.50)
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Figure 4.35.  Test set up to measure wicking resistance
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The flow rate per unit width of the screen is estimated as VwBfs.
Cross flow pressure drop.  For most PMDs, liquid has to flow across the screen at some

time. For that reason, the cross flow pressure drop ∆Pf  vs. flow velocity Vf  relation has
been measured for many types of screens and correlated to expressions of the form:

2
221 f

BP

sL
f

BP

sL
f V

D
BKV

D
BKP ρ+µ=∆ (4.51)

where K1 is a laminar flow resistance and K2 is a turbulent or inertial flow resistance.
The pore diameter for crossflow is not necessarily the same as the bubble point pore
diameter, but K1 and K2, which depend on the screen weave, account for this difference.

Screen data summary.  Table 4.2 summarizes the data for commonly used square and
twilled weave screens. The data comes from a variety of sources, which do not always
agree14; when there was a discrepancy, either the data from BLATT [1970] or an average
was used. Square weave screens do not wick (i.e., Φw = 0), and the wicking
characteristics of twilled dutch weave screens depend on whether the wicking is

                                                     
14 ARMOUR AND CANNON, [1968]; BLATT, ET AL [1970];; SYMONS [1974]; BINGHAM AND TEGART [1977];

DODGE AND BOWLES [1984]; these references also use data from other older sources.

Table 4.2  Geometric data for selected square and twilled dutch weave screens

Screen
Mesh

DBP,
microns

Bs,
microns Φw Cw Cw/Φw K1 K2

20 X 20 860 - 0 - - ≈ 0 1.36DBP/Bs

40 X 40 440 - 0 - - ≈ 0 3.16DBP/Bs

50 X 50 280 - 0 - - ≈ 0 5.44DBP/Bs

80 X 80 180 - 0 - - ≈ 0 4.77DBP/Bs

100 X 100 140 - 0 - - ≈ 0 5.34DBP/Bs

150 X 150 104 - 0 - - ≈ 0 2.90DBP/Bs

200 X 200 74 - 0 - - ≈ 0 3.77DBP/Bs

325 X 325 44 - 0 - - ≈ 0 0.62DBP/Bs

400 X 400 38 - 0 - - ≈ 0 4.94DPB/Bs

20 X 250 53 711
NA
NA

NA
NA

5610⊥
2805 

17.3 6.80

30 X 250 49 673 NA NA 40400⊥ 24.3 5.19

50 X 250 34 323
0.393
0.231

754
1058

1918⊥
4580 

7.9 50.00

80 X 700 30 249
NA
NA

NA
NA

4920⊥
2376 

45.5 7.25

150 X 700 23 178 NA NA NA 69.7 49.66

165 X 800 23 165
1.128
1.047

835
2580

740⊥
2466 

9.42 63.18

200 X 600 19 140
NA
NA

NA
NA

1063⊥
2063 

14.0 1.56

165 X 1400 19 152
NA
NA

NA
NA

6400⊥
3200 

64.8 10.52

200 X 1400 14 147
0.225
0.318

3157
1444

14031⊥
4540 

65.6 10.58
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perpendicular to or parallel to the warp wires, as indicated by the ⊥ and  symbols in the
table. Furthermore, for square weave screens, the laminar flow resistance K1 is negligibly
small, and the K2 factor listed in the table includes the ratio DBP/Bs so the cross flow
pressure drop for a square weave screen is simply the listed numerical factor (e.g., 1.36
for a 20 X 20 mesh screen) times the liquid density and the square of the velocity; for this
reason, the thickness of the square weave screens is not listed in the table.

Perforated plates.  PMDs fabricated from plates containing a myriad of small diameter holes
have some structural advantages compared to screens; for example, they can be fastened
to the tank rather than welded. Special manufacturing procedures are needed, however,
to make the diameter of the holes small enough to have a large bubble point. An
alternative is to stack several plates, with the holes staggered from one plate to the next,
so that only a small fraction of each hole is open [TEGART AND WRIGHT, 1983]; stacking
the plates also allows a small gap to be maintained between the plates which might be
effective in wicking, for otherwise a perforated plate does not wick liquid. The
characteristics of perforated plates are mostly proprietary to the manufacturer. Hence,
little or no data are available for use in the design of a PMD.

Typical design considerations for PMD/LADs
The design of a spacecraft tank PMD or LAD requires that the designer evaluate the
mission requirements to determine what kind of PMD is best. The design details are then
explored and the failure mechanisms (leakage, gas ingestion, etc.) investigated. This last
step is particularly important since many PMDs cannot be ground tested. Simplified
design concepts for several types of PMD are discussed below.

Refillable trap (“start basket”).  Suppose a spacecraft mission requires a few restarts of a
small thruster for maneuvering or course
corrections. If the thrusting duration is sufficient
to settle the liquid each time, a refillable trap or
start basket, such as the one shown in Figure
4.36, may be the best light weight and simple
PMD. The trap volume must be big enough (with
margin) to supply the thruster during the settling
period, and the trap must be refillable to allow
the thruster to be restarted the next time.

The mission specifications are summarized
as follows:
• Hydrazine propellant: ρL = 0.036 lb/in3 and σ

= 60 dyne/in
• Thrust: F = 1 lb
• Mass of spacecraft: Msc = 1200 lb
• Propellant flow rate: Q = 1.5 in3/sec
• Minimum thruster duration: Tmin = 150 sec
• Volume of tank: VT = 14000 in3; height of

tank: HT = 30 in
• Maximum lateral acceleration (occurs during launch): gx = ±4 go
• Maximum axial acceleration (occurs during launch): gz = 2 go
• Maximum flow pressure drop allowed for PMD: ∆Pmax = 2 psi
The tank is pressurized to allow the propellant to be fed by the pressure difference
between the tank and the engine chamber.
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and top
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Figure 4.36.  Schematic of a refillable
trap PMD
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The trap volume is computed first. We need to know how much propellant the trap
must supply before the liquid is settled and the covers the trap, so the settling time has to
be estimated. The settling acceleration is F/Msc = 1/1200 = 0.00083 go = 0.322 in/sec2.
The time required for a liquid particle to fall freely from the top of the tank to the bottom
is therefore (2 X 30 in/0.322 in/sec2)0.5 = 13.6 sec. The time required to settle liquid over
the trap is estimated conservatively as four times this free-fall time, or 54.4 sec. This is
considerably less than the engine firing duration of 150 sec, so liquid should refill the
trap after each firing. The required minimum volume of trap is therefore 54.4 sec X Q =
81.6 in3. The first design equation is thus:

32 in 681
4

.HD avgo =π (4.52a)

As a first trial, the trap diameter is estimated to be the same as the average height; thus,
Do = Havg = 4.7 in.

A screen mesh must now be selected that has an adequate bubble point. When the trap
is full and gz is oriented to make the liquid in the tank move away from the trap, the
screens are exposed to gas on the outside and liquid on the inside. Hence, if the
hydrostatic head caused by either the gz or gx accelerations exceeds the bubble point, the
trap will admit gas and expel liquid. Considering first the gx acceleration, the hydrostatic
head across the trap is equal to ρLgxDo. Since the screens cannot support any pressure
increase from the liquid to the gas, a pressure balance along a path from the outside gas,
through the screen, horizontally along the liquid, and then back to the gas shows that the
bubble point pressure at the low pressure side of the trap must be at least equal to the
specified hydrostatic head. Thus, the second design equation for the trap is:

( )( ) psi 680in744
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lb03604
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The surface tension of hydrazine is about 60 dyne/cm = 0.00034 lb/in, so Eq. (4.52b)
indicates that the bubble point diameter can be no larger than DBP = 0.002 in =
51 microns. A fairly fine mesh screen will be needed, and it may not be practical to
fabricate the trap. Nonetheless, from Table 4.2, a square mesh screen with either 325 X
325 or 400 X 400 wires per inch will provide the required bubble point with some
margin. Next we should consider the hydrostatic head caused by the gz acceleration.
However, here the gz head is not of concern, because it is smaller than the gx head.

A square mesh screen is preferred since the trap must be refilled, and a twilled
dutch screen might wick closed during the refilling and trap some gas. However, a
twilled dutch screen could be used, if the top surface of the trap was made solid so that
refilling would have to occur through the sides and bottom of the trap.

Next, the pressure drop across the trap must be checked. During the thrusting
period after the propellant has settled, liquid flows across the trap into the outlet. The
flow velocity depends on the screen area; neglecting the screens facing the bottom, the
flow area is A = 86.7 in2. The liquid velocity Vavg across the screens is Q/A =
1.5 in3/sec/(86.7 in2) = 0.0173 in/sec. For a 325 X 325 mesh screen, K2 from Table 4.2 is
0.62DBP/Bs, so the flow-through pressure drop of 0.5ρK2Bs(Vavg)2/DBP is equal to
0.00036 psi. This value is negligible compared to the 2 psi requirement. Hence the
conceptual design satisfies the requirements.
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Refilling can be aided by installing a small standpipe at the top of the trap to give
gas a place to exit. The openings in the standpipe must be covered with a non-wicking
screen, and the hydrostatic head caused by the gz acceleration must not exceed the
bubble point of this screen. If a standpipe is not used, the trap upper surface must be
conical or some shape that will permit gas to collect and exit at a high point.

Other considerations may affect the trap design, For example, the maximum
residual volume of propellant in the tank after the last restart may be specified, so the
design should be checked to ensure that liquid in the trap and tank does not exceed the
specified value at the point when the level in the tank just falls below the top of the trap.
An anti-vortex baffle may also be required over the outlet.

Galleries or channels.  As another example, consider a communication satellite that uses an
arcjet thruster for its transfer orbit maneuver. The arcjet is activated several hundred
times, each time creating an acceleration of the order of 10-5go for up to 30 minutes. The
hydrazine propellant tank is a 21-in diameter cylinder with hemispherical ends, and the
end-to-end length is 30 in. The time for
a fluid particle to fall freely from one
end of the tank to the other when the
arcjet is thrusting is only about 2.5
minutes; liquid will settle over the
outlet during the thrusting, but the
settling acceleration is so low that the
liquid could not penetrate the screens of
a trap PMD to refill it. Hence, some
other kind of PMD is required. A
gallery or channel PMD is an option, as
shown in Figure 4.37.

The propellant flow from the tank
is driven by pressure. The tank is
initially pressurized, but it is not
repressurized as it is emptied. Thus, to
ensure that the pressure does not
decrease significantly as the tank
empties, the tank volume (8330 in3) is
designed to be about three times the
initial propellant volume (2747 in3). The
settled depth of the liquid at liftoff is
thus only 11.4 in. Other specifications are listed below.
• maximum axial acceleration: gz = 8go (during launch)
• maximum lateral acceleration: gx = ±3.5go (during launch)
• Attitude control acceleration: gx = ±0.00025go (from catalytic thrusters not fed from

the hydrazine tank)
• propellant flow rate: Q = 0.137 in3/sec
• maximum PMD pressure drop: ∆Pmax = 5 psi
• maximum propellant residual at end of mission: 1.5% of initial loading = 41.2 in3.

At least one PMD channels has to remain in contact with the propellant at all
times to ensure gas-free propellant to the arcjet, otherwise the tank pressure will drive
gas into one or all of the channels. The exposed areas of the screens also must not dry
out from evaporation. Since there is no assurance that liquid will be located in any
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Figure 4.37.  Schematic of channel PMD
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predictable location in zero-g, the channels must be designed to accommodate any liquid
location. One option is to make the channels extend from the bottom of the tank to the
top, with the spacing of channels around the tank circumference small enough so that the
tank liquid cannot “hide” between the channels. (The liquid tends to remain bound to the
walls.) But during launch, the liquid depth is only 11.4 in above the outlet, so a channel
that extends from the bottom to the top will be exposed to gas over the upper H = 18.6 in
of its axial length. For hyrdrazine, the hydrostatic head created by the 8go launch
acceleration in the exposed upper part is ρLgzH = (0.036 lb/in3)(8go)(18.6 in) = 5.36 psi.
At the top of the channel, there is thus a pressure difference of 5.36 psi exerted across
the screen from the gas to the channel liquid. The screen bubble point must be 5.36 psi
so as not to leak during launch. For hydrazine, this would require a pore diameter of
about 0.00028 in (7 microns). The data in Table 4.2 indicate that such a tight screen
weave would be difficult to acquire. Consequently, an alternative concept is needed.

Since the maximum depth of settled liquid is only 11.4 in, the channel does not
have to extend all the way to the top of the tank if some method is used to prevent liquid
from being located at the top of the tank in zero-g. Figure 4.37 shows one way to
accomplish this. The channels terminate at a height slightly greater than the maximum
settled depth of the propellant, and a blocking screen prevents the propellant from
migrating to the upper end of the tank during zero-g. During launch, the combined effect
of the axial and transverse accelerations causes the settled liquid to be inclined at 30° to
the horizontal, so the highest edge of the liquid surface is 6.1 in above the settled depth.
Therefore, the channels need to extend to a height of about 11.4 + 6.1 = 17.5 in above the
tank bottom. The critical hydrostatic head is now only (0.036)(8go)(6.1) = 1.76 psi. The
corresponding pore diameter is 0.008 in (21 microns). A twilled dutch screen with a
mesh of 165 X 1400 or 200 X 600 wires per inch should be adequate, considering the
conservatism in the calculations.

In zero-g, the blocking screen must retain the liquid in the lower part of the tank.
The contact line of the zero-g liquid interface on the walls is about 7.0 in above the
settled liquid level. Since the blocking screen is 6.1 in above the settled level, the
interface will therefore exert a very small pressure on the screen during the arcjet
thrusting and the catalytic thruster firing. The blocking screen is likely to be dry in zero-
g, but the interface pressure is so low that the “drop point” pressure of the screen, which
is usually assumed to be zero, will exceed it, so the screen will not leak. Sloshing creates
an additional impact pressure. An estimate of the low-g slosh amplitude is 4 in for the
specified transverse impulsive acceleration of 0.00025go. The slosh impact pressure is
therefore no greater than about (0.036)(0.00025go)(4) = 0.0139 psi. The blocking screen
may leak very slightly during the transient sloshing intervals.

The blocking screen has to remain open to gas flow, so it should be made from a
square mesh weave to prevent wicking. The channel screens must remain wet, however,
so they should be made from twilled dutch screens to permit wicking. To assist in filling
the channels initially, a small wicking barrier is used at the upper end of each channel, as
shown in Figure 4.37; this keeps the upper screen dry during the filling so that gas can
be expelled.

The pressure drop from the bulk liquid to the channel during outflow is a
maximum when the liquid volume is a minimum, since that corresponds to the minimum
wet surface area of the channels. The settled depth for the minimum liquid volume of
41.2 in3 is about 1.2 in. For conservatism, all the outflow is assumed to pass through one
channel, which considering the shape of the bottom of the tank therefore corresponds to
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a wetted length of about 5 in. For this flow length, the screen flow area needed to ensure
that the pressure drop does not exceed 5 psi gives a width of W = 0.006 in, which is too
small to be practical, so it is increased to 0.25 in. The channel cross section is thus 0.25 X
0.25 in, with the wall facing the tank wall being a screen, as indicated in Figure 4.37.
When the channel liquid flows toward the outlet, there is a pressure drop along the axis
of the channel. Again, for maximum conservatism, it is assumed that all the arcjet flow
occurs in one channel, and the liquid enters this channel at its very top. The computed
pressure drop is less than 0.005 psi. This value is well within the specifications, and
further it will not result in the bubble point being exceeded at the lower end. The spacing
of the channels is determined by the requirement that the minimum liquid volume (41.2
in3) cannot fit in between two adjacent channels. Assuming that the liquid is distributed
along the cylindrical walls during the catalytic thruster firing (the critical condition), the
minimum spacing corresponds to six equally spaced channels. If the channels are spaced
in the tank such that the line of action of the catalytic thrusters does not bisect the open
space between any two channels, four equally spaced channels is sufficient. The
channels are interconnected over the tank outlet by a manifold which may contain a
sponge to make sure it remains full of liquid. The manifold must be designed so that the
maximum residual propellant volume specification is not violated. This implies that the
manifold upper surface must be below the settled liquid depth (1.2 in) when the residual
propellant volume is attained.

VAN DYKE [1998] has shown that the optimum screens (i.e., lightest weight) have
the smallest value of the ratio of the ∆P caused by the flow across the screen to the
bubble point ∆PBP and that these screens have the coarsest mesh that can be made to
satisfy the bubble point requirement. Methods of ground testing to confirm the
performance of gallery and other types of PMDs are discussed by YEH AND BOND [1988]

Vane PMD.  For satellites that thrust in any direction and for any duration, a combination of
vanes and a refillable sponge may be the lightest and simplest PMD. Figure 4.38 shows
such a PMD. If the thrust direction is
completely arbitrary, the vanes must
extend all the way to the top of the
tank.

Vanes pump propellant to the
outlet or the sponge by trapping the
liquid in the fillets between the vanes
and the wall as a result of surface
tension forces created by shaping the
vanes near the tank wall such that the
radius of curvature of the trapped liquid
interface decreases near the outlet
[JAEKLE, 1991. (The figure shows the
vanes immersed in liquid; the critical
case is when the liquid pool is away
from the outlet and only part of the
vane is immersed in liquid.) The acceleration that results in the vanes leaking is
determined by these radii of curvature.

A vane PMD cannot provide high propellant flow rates or retain liquid when the
disturbing accelerations are large [DREYER, ET AL, 1998]. If large accelerations occur only
during launch, a vane PMD might still be useful by installing a blocking screen at the top
of the vanes similar to that shown previously in Figure 4.38.

vane

sponge

liquid

Figure 4.38.  Vane and refillable sponge PMD
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Other PMD designs.  The PMD designs discussed above are only a small sample of the
designs that have been used in spacecraft. PMDs are designed specifically for each
mission. More complete details of the design and operation of propellant management
devices are given in DOWDY, ET AL [1976], TEGART [1979]; DODGE [1992], PUROHIT, ET AL
[1998], DEBRECENI AND LAY [1998], and TAM, ET AL [1998].

4.8 PMD Considerations for Cryogenic Liquids
Although much of the preceding discussions applies equally well to cryogenic liquids,
cryogens do introduce several new problems [FISHER, ET AL, 1991; SCHUSTER, ET AL, 1991;
FRANK AND JAEKLE, 1996]. Not all the technology to solve these problems has advanced
beyond drop-tower tests and analytic models [AYDELOTT, ET AL, 1985; BAILEY, 1991]. An
example of a specific cryogenic problem is the fact that the vapor pressure of a cryogen
is not greatly different from the tank pressure, which can easily lead to local boiling or
vaporization of the liquid.

Heat transfer and pressure control.  Heat transfer between a cryogenic tank and its
surroundings is considerably different than for a storable liquid. While the mean
temperature of the tank surface for a storable liquid can be controlled within the
temperature range in which the liquid must be used, the tank outer surface for a
cryogenic tank is at least 100°F above the desired temperature of even the warmest
cryogen. This means that the tank must be well insulated to prevent excessive boiling of
the cryogen and a subsequent pressure rise in the tank. Even with many layers of high
performance insulation, however, heat can reach the liquid through the support system,
the plumbing penetrations, and instrumentation lead wires.

It might be expected that, given the heat transfer rate, estimating the temperature
and pressure rise rate would be straightforward, by assuming the liquid is at a uniform
temperature and the vapor pressure is equal to the saturation pressure at the liquid
temperature. However, the liquid temperature is generally far from uniform, and the
liquid and the vapor do not reach thermal equilibrium instantaneously. The lack of
temperature uniformity is caused by
natural convection. Even in low
gravity, buoyancy forces can be
significant for large tanks. Figure
4.39 illustrates the phenomenon of
stratification for a case when the
residual gravity is sufficient to
settle the liquid. Many analyses of
stratification have been conducted
[e.g. BAILEY, ET AL, 1963; LEVY, ET
AL, 1964; TELLEP AND HARPER, 1964;
SCHWARTZ AND ADELBERG, 1965].
The thickness of the hotter layer on
top grows with time as a result of
the hotter buoyant fluid rising along
the sides of the tank. These natural
convection boundary layers are
usually turbulent. A mass balance gives the following relation for the thickness of the
stratified layer as a function of time:

isothermal
core of
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Figure 4.39.  Cryogenic liquid stratification
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where Pr = (µCp/k)L is the Prandtl number and Gr = gβL(R0)2Q(ρL/µL)2/kL is the Grashof
number based on the heat transfer rate Q per unit per unit wall area, with kL being the
liquid thermal conductivity and βL the liquid thermal expansion coefficient. With this
relation, the temperature of the stratified liquid can be estimated from the heat transfer
rate across the tank walls into the liquid.

If the vapor and the liquid in the tank are in equilibrium, the pressure would be
equal to the saturation pressure of the hot surface liquid. This pressure is considerably
larger than it would be if the liquid was well mixed at a uniform temperature. Although
the liquid and vapor are not likely to be in thermal equilibrium, especially if a non-
condensable gas is mixed with the vapor to pressurize the tank, the tank pressure will
nonetheless increase at a rate that is probably larger than for a mixed liquid.
Consequently, a tank containing cryogenic liquid must be vented periodically. Mixing
the liquid, with axial jets or otherwise, tends to breakup the stratification and thus reduce
the need for frequent venting [BENTZ, ET AL, 1997]. This need to vent the tank gives rise
to the same problem as if the liquid were storable, namely how to ensure gas is vented
rather than the more valuable liquid, as was discussed previously.

For a cryogen, the possibility
that liquid rather than gas may be
vented has been used to advantage
to develop an ingenious method of
cooling the tank liquid with the
vented fluid. One form of this
thermodynamic vent system (TVS)
is shown schematically in Figure
4.40 [BAILEY, 1991]. A TVS
operates by expanding some of the
tank liquid through a Joule-
Thomson expander connected
between the tank and the vacuum of
space; the process evaporates part of
the liquid and the overall
temperature of the expanded fluid
decreases significantly. In the application shown in Figure 4.40, the colder TVS fluid
flows through a heat exchanger to cool the liquid bulk and then is vented. Alternatively,
the colder fluid can be used to form a cold jacket around the tank (a vapor cooled shield).
The venting fluid can also be used to augment the thrusting. A TVS works best if the
entering fluid is liquid, so the TVS inlet is generally connected to the tank liquid
acquisition device. Some designs employ a separate pump to mix the bulk liquid to
prevent stratification [CADY AND OLSEN, 1996].
Tank filling and liquid transfer. Some future missions will require filling tanks with cryogen in space. It is

difficult to fill a tank efficiently with a storable liquid in a low-gravity environment because of the gas
venting problem, and it is even more difficult when the liquid is a cryogen because vaporization and
boiling accentuates the venting problem. Figures 4.41a and 4.41b illustrate two concepts for filling a
tank with a cryogen, neither of which vents the receiver tank during the filling [CHATO, 1993].

heat
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hot side
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VAPOR
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device (expansion
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Figure 4.40.  Schematic of thermodynamic vent for
cryogenic liquids



4.  FLUID MANAGEMENT IN MICROGRAVITY

110

For the no-vent filling process show in Figure
4.41a, the first step is to chilldown the transfer
lines and the receiver tank using liquid from the
supply tank. This clearly vaporizes some of the
liquid. The process can be made more efficient
by using a direct contact wall-mounted heat
exchanger or by a charge-and-hold process in
which liquid is sprayed into the receiver tank
where it flashes to vapor and is allowed to reach
thermal equilibrium with the tank walls.
Eventually, the tank temperature is decreased to
the point at which the filling can proceed. Part of
the incoming liquid vaporizes, but the
subsequent compression by additional liquid
condenses most of it. The liquid is sprayed into
the tank to enhance the condensation process and
to “find” and condense the ullage vapor bubbles
to maximize the fill level.

The ullage exchange process shown in
Figure 4.41b is similar to the no-vent process
except that the receiver tank is vented back to the
supply tank during the filling. Both liquid and
vapor may be vented.

Both processes require a liquid acquisition
device in the supply tank to ensure that only
liquid is transferred from the supply tank. The
receiver tank may also contain a LAD but if so it
should always remain full of liquid because re-
filling a LAD in low gravity is extremely
difficult. It is clear that all these processes
involve low-g two-phase mass and heat transfer,
which are subjects of intense research.

Interaction of bubble point pressure and
vaporization from screens.  Both the wicking and bubble point pressures of a liquid
acquisition device screen depend on capillary forces. When wicking and a pressure
difference occur simultaneously, the total capillary potential of the screen is not available
for either phenomena [DODGE AND BOWLES, 1984].

Experiments have shown that to a good approximation, the bubble point pressure
decreases linearly with wicking velocity and that the bubble point is greater than zero
even when the wicking rate is the maximum possible. These experimental observations
are expressed by the relation:
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Here, Vw,max from Eq. (4.49) is the maximum possible wicking velocity for the screen, Vw
is the actual wicking velocity, and KBP is a numerical factor that depends on the screen
weave. Data for KBP are available for only a few twilled dutch screens (24 X 110 and 50
X 250 wires per inch), and for these screens KBP ≈ 0.5; this value is probably applicable
to other screen weaves as well. The actual wicking velocity Vw is determined by the
evaporation rate from the screen.

Similarly, the maximum possible wicking suction pressure has been found to
decrease linearly with the gas-to-liquid pressure differential ∆P across the screen. To be
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consistent with Eq. (4.54), the wicking suction pressure must be equal to its maximum
value when the gas-to-liquid pressure is less than (1 − KBP)(4σ/DBP). Thus:
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where ∆Pmax = 4σ/DBP. To be conservative, one should probably assume that Vw = Vw,max;
in that case, the maximum bubble point pressure is 4σ/DBP(1-KBP) ≈ 2σ/DBP.

Cryogenic-specific failures of LADs and PMDs.  Propellant management devices such as
channels, start baskets, and traps work by establishing a capillary barrier between the
liquid in the device and the exterior gas. But when the liquid is a cryogen, gas can be
generated within the device by local boiling as a result of heat transfer. A few vapor
bubbles within the PMD are not likely to cause problems because the PMD screen will
wick over any dry spots and prevent the entrance of large quantities of exterior gas.
However, if most of the liquid in the PMD is vaporized, problems will occur. Various
methods of eliminating vapor bubble from the inside of PMDs have been proposed, such
as tapering the channel of a gallery PMD to force vapor bubbles to a specific location
within the PMD where they might be vented; none of these methods have yet been
tested. The most fail-safe method of eliminating vapor bubbles appears to be to re-
condense them by cooling the PMD liquid with a thermodynamic vent system. At
present, the lack of flight data and proved methods of ensuring the operation of channels,
start baskets, and traps for cryogenic liquids have prevented the use of these types of
PMD in cryogenic tanks of space vehicles. Other forms of PMD, such as vanes, do work
well with cryogens.

Other cryogenic considerations.  A phenomenon related to the stratification of a cryogenic
liquid in a tank is ullage pressure collapse. As mentioned earlier, the pressure of the
vapor in the ullage is equal to the saturation pressure of the hot liquid at the surface,
assuming that sufficient time has elapsed for the vapor to be in thermal equilibrium with
the liquid. If the liquid is suddenly mixed, say by sloshing or otherwise, the temperature
of the surface liquid will suddenly decrease. As a result, the pressure of the ullage vapor
will also suddenly decrease. This collapse of the ullage pressure can cause a problem if
liquid outflow is being driven by the tank pressure, because the outflow will also
suddenly decrease.

Because cryogens boil easily, two-phase flow is prevalent in flow lines. Two-
phase flow in low-gravity is not yet well understood, but it is apparent that choking and
transients such as water hammer might be problems. Furthermore, flow meters which are
routinely used as a method of gauging the total flow from the tank to determine the fluid
inventory, are considerably less accurate when the flow is two-phase.
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This chapter is a shortened revision of Chapter 3 of the same title. The original authors were H. NORMAN
ABRAMSON, WEN-HWA CHU, AND FRANKLIN T. DODGE.

5.1 Introduction
The preceding chapters presented the basic technology of lateral sloshing from the point
of view of both theory and experiment for conditions when the slosh wave amplitude is
so small that the wave responses are linear. In reality, nonlinear effects are always
present, and they sometimes dominate the sloshing response. These nonlinear slosh
effects can be described in terms of three classes: (a) those that arise primarily as a
consequence of the shape of the tank and are apparent even for relatively small wave
amplitudes; (b) those that arise primarily as a consequence of large wave amplitudes; and
(c) those that involve essentially different forms of sloshing as a result of instabilities.

At the time when NASA SP-106 was published (1966), the most applicable and
useful theoretical way to analyze the effects of nonlinearities on sloshing was the
classical perturbation method [VAN DYKE, 1964] applied to the nonlinear equations that
describe free surface waves, which are discussed in many texts and references [for
example, STOKER, 1957; DEBNATH, 1994]. Nowadays, general purpose computational
fluid dynamics computer codes having a free surface capability are usually employed to
investigate nonlinear effects15. Perturbation methods are still valuable, however, because
they clearly show how the solution varies with the parameters of the problem. But they
are, however, applicable only over a limited range of wave amplitudes, as a result of
convergence considerations. In this chapter the application of the perturbation method to
free surface waves is described, both for historical reasons and because there are some
kinds of sloshing (e.g., rotary) for which CFD codes are even now not generally
applicable. The use of CFD codes, which is a subject unto itself, is not discussed here
except in passing.

Engineering estimates of maximum wave amplitudes
Sometimes all that is required is an estimate of the maximum wave amplitude expected
during some part of a space mission. This would be the case, for example, when the
maximum slosh load on a baffle or tank partition has to be estimated. There are relatively
simple methods of obtaining these estimates.

When surface tension is negligible, the maximum downward acceleration exerted
on a liquid particle at the free surface (which occurs just when the wave peaks in the
upward direction) is g – δω2, where g is the effective gravitational acceleration, δ is the
wave amplitude, and ω is the slosh natural frequency [BRASLOW, 1968]. Since the
maximum acceleration at the peak height always has to remain positive (for otherwise
the fluid particle would tear off from the surface), the maximum wave height can
therefore be no larger than δmax = g/ω2, and the maximum usually occurs at the tank
walls. As an example, for a cylindrical tank with a liquid depth considerably greater than
the tank diameter, the slosh natural frequency is (1.841g/R0)0.5 so the maximum wave

                                                     
15 One example of this use of CFD codes was discussed in Section 3.6 with reference to propellant settling

in the CASSINI spacecraft tanks.
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amplitude can be no greater than R0/1.841 ≈ 0.54R0, or roughly 25% of the tank diameter.
In fact, splashing, breaking waves, and even rotary sloshing would probably occur for
such a large amplitude. A somewhat better estimate, which can be used for ring baffle
damping determinations, is that the maximum amplitude cannot be more than about 10%
of the tank diameter, beyond which splashing and rotary sloshing will occur and add
additional apparent damping to the sloshing.

5.2 Nonlinear Effects Arising from Tank Shape
Compartmented cylindrical tanks.  Early experiments of sloshing in cylindrical tanks

divided into compartments
failed to produce resonant
frequency data that agreed
satisfactorily with theory
[ABRAMSON, ET AL , 1962,
1965]. The measured resonant
frequencies were always
lower than the theory
predicted, sometimes
substantially so, as shown in
Figure 5.1. (The reasons why
the measured frequencies
were lower than the predicted
ones will be explained
theoretically in Section 5.3.)
Later, more careful
experiments showed that
measurements and theory
agreed when the amplitude of
the tank oscillation was very
small. But the tank oscillation
amplitude had to be much
smaller than experience had shown to be necessary to obtain satisfactory agreement for
uncompartmented cylindrical tanks.

The unexpectedly stringent requirements on the excitation amplitude for
compartmented tanks were essentially due to the tank geometry. Continuity of the flow
toward the center of the tank caused the wave amplitude at the center to be relatively
high, since the liquid was “squeezed” into a corner. It will be shown in the Section 5.3
that the natural sloshing frequency is affected by wave amplitude. Hence, the lack of
agreement between theory and experiment with respect to frequency for a
compartmented tank was the result of the tank shape in magnifying an otherwise small
wave amplitude into a nonlinear wave amplitude near the center of the tank.

Another remarkable finding for a compartmented tank is that holes in the
compartment walls (used to reduce weight or increase damping) had a significant effect
on the resonant frequency [ABRAMSON, ET AL, 1965, 1966]. When the composite Reynolds
number Re = (dg0.5D1.5)/(νX0) defined in terms of the lateral excitation amplitude X0, the
tank diameter d, and the hole diameter D was less than about 10,000, the experimental
natural frequencies corresponded to the natural frequencies of the individual
compartments with solid walls. But when Re > 10,000, the experimental frequency
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Figure 5.1.  Effect of lateral excitation amplitude X0 on the
lowest resonant frequency for sector tanks; d = tank diameter
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corresponded to the lower frequency of an uncompartmented cylindrical tank of the same
diameter and liquid depth. The transition was not sharp, and slightly larger frequencies
were measured near the transition. Apparently, for Re > 10,000, the holes were so large
that the liquid sloshed back and forth into adjacent compartments as if the walls were not
present. The slosh forces also displayed nonlinear characteristics.

Spherical tanks.  Experiments with spherical tanks over a range of fill levels showed that the
resonant frequency had nonlinear characteristics when the fill level was over 50%
[ABRAMSON, ET AL, 1963, 1964]. This was again a result of tank shape, since for fill levels
over 50%, the upward half of a slosh wave intersects a tank wall that was curved down
towards it. The decreased area available to the wave promoted breaking waves. The
effects of the nonlinearities for spherical tanks are not so pronounced, however, as they
were for compartmented cylindrical tanks.

5.3 Theory of Large Amplitude Motions
It can be argued that any nonlinearities resulting from the tank shapes discussed in the
previous section, are actually nonlinearities resulting from a finite amplitude of the slosh
wave. Although this is undoubtedly true, the wave amplitude required to produce
nonlinear effects  is considerably smaller for those tank shapes than for cylinders and
other common shapes. In any event, when the wave amplitude is large enough to cause
nonlinear effects, the linearized theory discussed in Chapter 1 is not valid. Hence, in this
section, the linear theory is extended to include finite wave amplitudes.

It is still valid to neglect viscous effects, so the nonlinear slosh theory can be
derived from a velocity potential. Hence, the basic differential equation is still linear:

02 =Φ∇ (5.1)
and the liquid velocities are still given by the spatial derivatives of the potential. All the
nonlinearities enter the analysis through the boundary conditions. In the linear theory,
these conditions are imposed at the undisturbed boundaries; in particular, the free surface
conditions are imposed at the equilibrium
location of the free surface. When finite wave
amplitudes are considered, however, we have
to impose the boundary conditions at the
actual locations of the boundaries. Figure 5.2
illustrates the differences between the linear
and nonlinear boundaries for the case of a
rectangular tank subjected to a transverse
oscillation of amplitude X0. The no-flow
condition is now imposed at the displaced
condition of the tank walls. The free surface
conditions are now imposed on the actual
wave surface location z = δ(x,t), although this
location is unknown and must be determined
as part of the solution.

Just as for the linear theory, we will
begin by finding solutions for the case when
the tank is not moving. Furthermore, surface
tension effects will be neglected, and the
effective gravity g is assumed to be directed downward along the tank axis. To develop
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the theory, we will focus on two dimensional waves in a rectangular tank similar to that
shown in Figure 5.2.

With these assumptions, we have to consider only u velocities (x direction) and w
velocities (z direction). The boundary conditions at the tank walls are:

hzw
z

axu
x

−===
∂
Φ∂±===

∂
Φ∂ for     0               for         0 (5.2)

For simplicity, the water depth is assumed to be much greater than the tank width, so the
no-flow condition at the tank bottom is replaced by ∂Φ/∂z = w → 0 as h → − ∞.

The nonlinear boundary conditions at the free surface are considerably more
complicated than the linear theory boundary conditions. As before, the velocity of the
wave perpendicular to the free surface has to be compatible with the liquid velocity at
the free surface. This time, however, the condition is not applied to a flat surface so we
have to include all the components of the liquid velocity, and the nonlinear boundary
condition becomes:

( )t,xz
xxzt

δ=
∂
δ∂

∂
Φ∂−

∂
Φ∂=

∂
δ∂ for        (5.3)

Likewise, the pressure at the free surface must be made equal to the gas pressure (the
value of which can be absorbed into the definition of the potential). The nonlinear
boundary condition that relates the pressure and wave motion at the free surface is:
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(5.4)

As was mentioned in the Section 5.1, these equations will be solved by the method
of perturbations, which is also called the method of successive approximations. The
discussion given below follows the development of PENNEY AND PRICE [1952], who
formulated the analysis as part of a World War II effort to compute wave loads on
floating breakwaters (called Mulberry harbors).

Successive approximation solution
For this example, we will consider two-dimensional symmetrical waves; the same
method could be used for antisymmetrical waves which are generally of the most interest
for spacecraft. The symmetrical solution of Eq. (5.1) that satisfies Eqs. (5.2) is:

∑
∞

=

π 
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
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0

cos
n

azn
n a

xne (5.5)

The n = 0 term in this expression corresponds to the arbitrary time function in
Bernoulli’s equation and is needed only when calculating the pressure. When Eq. (5.5) is
substituted into Eq. (5.4), the equation of the free surface is found (after some algebra) to
be:
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where the dot over αn indicates differentiation with respect to time. An equation of this
form may be regarded as an implicit relation to solve for δ in terms of x. Since the
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coefficients are periodic functions of x it follows that δ must also be periodic, but it does
not necessarily follow that δ is real for all real values of x. Hence, to ensure the existence
of a continuous free surface, some theoretical limit must be imposed on the allowed
values of the αn coefficients. This limit implies that the wave cannot exceed some
maximum amplitude. Assuming that this condition (which at this point is not known) is
satisfied, we can solve Eq. (5.6) by assuming a periodic solution for δ:

∑
∞

=






 πβ=δ

1

cos
n

n a
xn (5.7)

The βn coefficients in Eq. (5.7) have to computed in terms of the αn coefficients in Eq.
(5.5).

Before working through the algebra of the solution, we will make the equations
dimensionless by dividing lengths by a/π and time by (a/πg)0.5. The dimensionless form
of the αn coefficients is denoted by An and the dimensionless form of βn by Bn. The
method of solution begins by substituting the dimensionless forms of Eq. (5.5) and Eq.
(5.7) into the free surface boundary conditions Eqs. (5.3) and (5.4), and collecting the
coefficients multiplying each cos(nx) term. The coefficient of each such term on the left
and right hand sides of the equations must be separately equal, without regard to the
other cosine terms. The algebraic labor is quite involved and involves expanding
exponential terms into power series and using the sum and difference relations for
products of cosines16. The coefficient of each cosine term is a function of all the An and
Bn. If the approximation process is to converge, the magnitudes of An and Bn must
decrease as n increases. Consequently, the number of terms in the coefficient of each
cosine can be truncated after some finite number of terms. At this point it is assumed that
An and Bn will decrease at least in proportion to a wave amplitude parameter ε to the nth

power; we will show later that this assumption is correct. In the following summary, all
the coefficients through fifth powers of ε are derived, but the same process could be used
to retain higher order terms.

The boundary condition Eq. (5.4) eventually yields the following series of
ordinary coupled differential equations correct through fifth order terms.
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16 For example, ( )[ ] ( )( ) ...mxcosBn.)mxcos(BnmxcosBnexp iii +++= ∑∑∑ 22501  and

cos(nx)cos(mx) = 0.5cos[(n - m)x] + 0.5cos[(n +m)x].
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Equation (5.8) is only needed to compute the arbitrary time function in the potential and
will not be considered further here.
The boundary condition Eq. (5.3) yields the following series of differential equations:
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Linear approximation.  To determine how to proceed with the solution of these equations,
we will first determine what they reduce to when the nonlinear terms are discarded. The
linearized equations can be combined in pairs by differentiating, for example, Eq. (5.10a)
and substituting Eq. (5.9a) into it, and similarly for all the other pairs. The result is:

0=+ nn nBB&& (5.11)

The solution of this equation is simply Bn = εsin(t√n) or Bn = εcos(t√n). We will choose
the sine solution. The solutions are all of the first order in the wave amplitude ε, which is
the correct result and indicates that as the wave amplitude is made smaller, the wave
shape approaches one of its natural modes. To pose a definite problem, we will require
that the nonlinear solution reduces to the n = 1 mode as the wave amplitude is made
smaller. That is, we want to solve the problem in such a way that when all nonlinear
terms are discarded in the solution, the wave is an oscillation of the form:

( ) ( )tx sincosε=∆ (5.12)

where ∆ is the dimensionless form of δ. This assumption in effect eliminates all the linear
solutions of Eqs. (5.9) and (5.10) except for the A1 and B1 solution. By examining the
equations with the aid of Eq. (5.11), we find that the equations for An and Bn for n > 1
involve no linear terms but only products; hence, these terms are nonlinear corrections to
the n = 1 wave shape and natural frequency.

Second order approximation.  In the spirit of the successive approximation method, we will
next examine the solution when second order terms are retained in the equations,
assuming as indicated previously that An and Bn are proportional to εn. When the second
order terms in Eqs. (5.9) and (5.10) are retained, the equations reduce to the following.

1111       and                     ABAB −== && (5.13a)

1122112
1

22 2     and     ABABABAB −−=+= &&& (5.13b)

2for             and                    >−== nnABAB nnnn && (5.13c)
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From the first of these equations, we find that the original linear solution B1 = εsin(t) and
A1 = − εcos(t) is also the second order solution for A1 and B1; that is, there are no second
order corrections to A1 or B1.

Combining Eqs. (5.13b) to eliminate B2 gives:

11112
1

112
1

22 2 ABABABAA −−−=+ &&&&&& (5.14a)

When the first order solutions for B1 and A1 are substituted into the right hand side of Eq.
(5.14a), the result is found to be identically zero. The solution of Eq. (5.14a) is therefore
A2 = εsin(t√2), which, as we mentioned earlier, is discarded since it does not reduce to
εsin(t) when the amplitude ε becomes small. Thus, A2 = 0 to the second order, and there
is therefore no second order correction to the velocity potential. There is, however, a
second order correction to the wave shape. From either of Eqs. (5.13b), we find:

( )[ ]ttBABB sin1sinor           2
4
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2
1

2112
1

2 −ε=ε== & (5.14b)

Since B2 > 0, there is a second order correction to the wave shape. The third set of
equations, Eq. (5.13c), gives the solution An = εsin(t√n), but these are discarded since
they do not reduce to the desired solution when ε is small.

Third order approximation.  By substituting the second order solutions into the right hand
side of the set of equations and keeping terms through the third order, we find that the
third order solution is determined by the following set of equations.

2
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2
1
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11     and       AAABAAAAB &&&&& +−=−+= (5.15a)
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2      and                           AABAB &&& −== (5.15b)
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3
3       and                            AABAB &&& −== (5.15c)

3for               and                              >−== nABAB nnnn && (5.15d)

By combining the first set of equations, we get:

1
2
18

152
11

2
118

9
11 AAAAAAAA &&&&&&&& −+=+ (5.16a)

The second order solution (i.e., 11 AA −=&& ) can be used to evaluate the third order terms
on the right hand side of this relation. This substitution gives:

3
1

2
1111 4 AAAAA −=+ &&& (5.16b)

We want to find a solution for A1 that reduces to the linear solution εcos(t) when second
and third order terms are neglected. We therefore assume that A1 = − εcos(σt) + γ, where
γ is a function of the third order (since there is no second order correction to A1) and σ is
a higher order frequency correction. Substituting this assumption into Eq. (5.16b) gives:

( ) ( ) ( ) ( ) ( )
( ) ( )tt

ttttt

σε+σε−=

σε+σσε−=γ+γ+σε−σεσ

3coscos

coscossin4coscos
3

4
53

4
1

3232 &&
(5.16b)

By equating coefficients of cos(σt) we find that:

( ) ( )tt σε−=γσε=γ+γ 3cosor               3cos 3
32
53

4
5&& (5.17a)
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and
2

4
11 ε−=σ (5.17b)

When the other pairs of Eq. (5.15) are solved, we find that all the An = 0 for n > 1
to the third order, although the Bn are not. Consequently, the third order solution for the
velocity potential is:
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32
52
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1 131 (5.18)

The coefficient B1 for the wave shape correct through the third order can be obtained
from either of Eqs. (5.15a).

It should be noted that the natural frequency σ now depends on the wave
amplitude and that it decreases (“softens”) as the wave amplitude increases. This
conclusion agrees with the experimental observations discussed in Section 5.2.

Higher order approximations.  The succeeding approximations are obtained by exactly the
same process. For the fifth approximation, for example, the coefficients for the wave
shape are given by:

( ) ( ) tttB σε+σε−ε+σε−ε+ε= 5sin3sinsin 5
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( ) ttB σε−σε−ε−ε+ε= 4cos2cos 4
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( ) ( ) tttB σε−σε−ε−σε−ε= 5sin3sinsin 5
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ttB σε+σε−ε= 4cos2cos 4
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tttB σε+σε−σε= 5sin3sinsin 5
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5 (5.19e)

and the dimensionless frequency of the wave correct to the fifth order is:

4
128
132

4
11 ε−ε−=σ (5.19f)

These relations show that the assumption that the higher order terms are at least as small
as εn was correct. Furthermore, when Eqs. (5.19) are substituted into the dimensionless
form of Eq. (5.7), we find that there is never a time when the surface is perfectly flat, the
nearest to flat being a shape given by 0.143ε4cos(2x), which occurs when σt = nπ.

As mentioned earlier, the maximum upward wave amplitude occurs when the
wave is instantaneously at rest and the downward acceleration of the crest is equal to the
gravitational acceleration (neglecting the effect of surface tension). By working through
the algebra of the velocity potential, using values of An correct to the fifth order, we find
that this condition corresponds to σt = (n+0.5)π for n an even integer and the maximum
allowed value of ε = 0.592. When n is an odd integer, the wave has its maximum
downward deflection. Figure 5.3 shows these upward and downward wave profiles. The
maximum nondimensional height of the crest is 0.885; since the nondimensional wave
length is λ = 2π, the maximum wave height corresponds to 0.141λ in dimensional terms.
The deepest trough is 0.482, which corresponds to 0.077λ. As can be seen, the upward
wave is considerably more peaked than the flatter downward wave shape. In fact, in the
limit, the crest makes a sharp angle of 90° rather than being slightly rounded as shown in
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Figure 5.3. The maximum
wave shape profiles agree
satisfactorily with
experimental measurements
[TAYLOR, 1952].

Standing waves in tanks.
Nonlinear waves in tanks of
rectangular and circular
cross section have been
analyzed by similar
perturbation methods
[TADJBAKSH AND KELLER,
1960; VERMA AND KELLER,
1962]. One interesting
finding of these
investigations is that when
the liquid depth is shallow,
the wave frequency
increases with wave
amplitude rather than decreasing as it does for greater depths; for a tank with a
rectangular cross section, the critical depth corresponds to about 0.17 times the wave
length.

Forced motions.  The basic theory outlined above has been extended to include forced
motions of a tank [e.g., BAUER, 1964 for a rectangular tank]. Because of the occurrence
of terms in Eqs. (5.19) that vary at twice, three times, etc., the fundamental frequency,
the forced motion theory demonstrates that it is possible to excite superharmonic
resonances as well as motions at the fundamental frequency. The next section discusses
another form of forced wave response that occurs for axisymmetric tanks.

5.4 Rotary Sloshing
Rotary sloshing in axisymmetric tanks was discussed in Section 3.6 from the standpoint
of an equivalent conical pendulum model. From that discussion, it is recalled that if the
frequency of the lateral oscillation of the tank is near the slosh natural frequency, there is
a tendency for the up-and-down antisymmetric wave motion to lose stability. When the
frequency is a little less than the slosh natural frequency, the nodal diameter of the
antisymmetric wave begins to rotate at a nonsteady rate. This unstable swirling motion
persists up to an excitation frequency a little above the natural frequency, where the
antisymmetric wave mode can occur again. There is also a somewhat larger frequency
range just above the natural frequency in which the nodal diameter can rotate stably at a
constant rate. These kinds of nonlinear motions have been analyzed by the method of
successive approximations, up through third order terms. The analysis is quite a bit more
complicated than that discussed in Section 5.3 because the stability of the solution must
also be investigated. The discussion below follows the analysis of HUTTON [1963].

The tank motion is treated by adding a velocity potential that “fits” the lateral
motion of the tank to the general potential; in other words, the potential is of the form:

( ) ( )tzrrXtzr o ,,,cos,,, θφ+θ=θΦ & (5.20)
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Figure 5.3.  Profiles of maximum amplitude standing wave
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This combined potential allows φ to satisfy homogeneous boundary conditions at the
tank walls and bottom: ∂φ/∂r = 0 at r = Ro and ∂φ/∂z = 0 at z = − h. It might be noted that
we cannot make the further assumption that φ varies as cosθ, as we did in Chapter 1,
because when the nodal line rotates, the wave amplitude varies with sinθ as well as with
cosθ.

As in Section 5.3, the amplitude of the nth term in the successive approximation
solution is taken to be proportional to a wave amplitude parameter to the nth power. This
fact is used to combine the two free surface boundary conditions [the cylindrical
coordinate versions of Eqs. (5.3) and (5.4)] into a single boundary condition, given by:

0321 =++ GGG (5.21)

correct to the third order in the velocity potential. The terms G1, G2, and G3 are
complicated functions of the potential. For example, G1 and G2 are given by:

θ+φ+φ= cos1 oz XrgG &&&& (5.22a)
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(5.22b)

where the subscripts indicate differentiation with respect to the coordinates. The function
G3 is composed of many terms all of which are of the third power in φ and its derivatives
or products of the second power of φ and its derivatives with Xo. The various solutions of
these equations are found for a tank motion that is given by Xo = εsin(ωt). The equations
are made dimensionless just as in Section 5.3.

The linear solution of Eq. (5.21) is the same as that discussed in Chapter 1, but the
nonlinear successive approximation solution of Eq. (5.21) requires a considerable
amount of insight to find. The solution starts, like the method discussed in Section 5.3,
by expressing φ as a power series in the amplitude parameter ε:
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The ψi and ζi functions are solutions of Eq. (5.1). In particular, ψ1 and ζ1 represent
fundamental linear antisymmetric waves:
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(5.24)

The ψn and ζn functions for n > 1 involve sums of higher order symmetric and
antisymmetric wave solutions. These functions are substituted into Eqs. (5.22) and the
equations are solved by expanding them into a Fourier series and collecting the
coefficients of sinωt, cosωt, etc. terms. The process yields a set of first order, coupled,
nonlinear differential equations in the generalized coordinates Ai(t), Bi(t), Ci(t), and Di(t).
The steady state harmonic solutions are found by considering only the four equations
that involve A1, B1, C1, and D1. The steady state occurs when all the derivatives dA1/dt ,
dB1/dt, etc. are equal to zero. There are two such solutions. The first one is a planar
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solution that corresponds to the fundamental antisymmetric wave but with an amplitude
A1 that depends on excitation frequency; the amplitude is the root of:
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where K1 and K2 are constants that depend on tank shape and fill level. The other
coefficients B1, C1, and D1 are zero for this solution. The parameter ν in Eq. (5.25a) is
defined in terms of the linear natural frequency ω1 of the fundamental antisymmetric
slosh wave, the excitation frequency ω, and the wave amplitude parameter ε:

2
1 1 νε−ω=ω (5.25b)

Note the similarity of Eq. (5.25b) to the corresponding natural frequency of an unforced
standing wave given by Eq. (5.17b).

The second solution of the equations corresponds to a nonplanar motion in which
the wave nodal line rotates around the tank axis. This motion has two non-zero
generalized coordinates A1 and D1 that are the roots of:
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where K3, K4, and K5 depend on the tank shape and fill level. The other two generalized
coordinates B1 and C1 are zero. For this nonplanar motion there is a term in the potential,
Eq. (5.23), that varies as cosθcosωt and a term that varies as sinθsinωt. These terms
describe a nodal line that rotates around the tank axis. For both the planar and nonplanar
motions, the parameter ν specifies how close the excitation frequency is to the natural
frequency.

Plots of the amplitude of the two steady state harmonic motions as a function of
the frequency parameter ν, are shown in Figure 5.4 for a specific value of tank diameter
and fill level. The usual planar
wave motion can occur for any
excitation frequency except near
a small frequency band centered
around the natural frequency.
The width of this excluded band
depends on the tank excitation
amplitude ε (which is contained
in the definition of the frequency
parameter ν), and when ε is
small, the actual range of
excluded frequencies is very
small. Non-planar rotary motion
can occur for a range of
frequencies that begins just
slightly below the natural
frequency and continues for a
considerable extent above the
natural frequency. In the range of
frequencies where stable
solutions of both planar and non-
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planar motion can occur, the observed motion depends on the initial conditions. Some
pre-existing swirl or out-of-plane inclination of the free surface is required for the non-
planar motion to occur, so the normal planar motion is usually observed in experiments.

There is a range of frequencies indicated in Figure 5.4 where both types of
harmonic motions are unstable. The most important of these regions is the one for which
the excitation frequency is in the range just above the lower range for stable planar
motions and just below the range for stable non-planar motions. In this range, the
observed motion is an antisymmetric wave that has a to-and-fro rotational oscillation of
its nodal line. In all other frequency ranges, a harmonic solution of one type or the other
is stable. These regions of instability were found theoretically by superimposing a small
disturbance α1exp(βt) on the corresponding steady state amplitudes A1 and D1and then
determining from the equations whether the amplitude of the disturbance increased with
time (positive real part of β) or decreased (negative real part of β). Because of the non-
linear coupling of the dA1/dt, dB1/dt, etc., differential equations, all four of the original
differential equations and all four amplitudes A1, B1, C1, and D1 have to be included in
the stability analysis.

In Section 3.6, the same regions of stability and instability were discussed by
analogy to a conical pendulum. Although similar trends were observed, the frequency
ranges for the various liquid motions and the analogous conical pendulum motions are
not quite identical.

The prediction of two types of stable harmonic motion and the stability of these
motions was a significant accomplishment at the time (circa 1960). Even with the
computer power available now, it is not a simple exercise to predict unstable wave
motions by CFD simulations. The planar and nonplanar (rotary) harmonic motion can
both be investigated readily by starting the CFD simulation with a free surface that is
inclined (for nonplanar motions) or is not inclined (for planar motions) to the direction of
the lateral oscillation of the tank. The unstable or swirl motion is, however, more
difficult to simulate and generally the simulation does not predict this type of motion;
apparently, to do so requires a very careful treatment of the nonlinear interactions at the
free surface.

5.5 Comments on the Successive Approximation Method
The analyses presented in Sections 5.3 and 5.4 are both special cases of the general
successive approximation method. In general, the method involves the following kinds of
analyses [MOISEYEV, 1958].

The nondimensional velocity potential φ and the nondimensional wave shape δ are
expanded into a power series of a small parameter ε:

∑ ∑
∞

=

∞

=

∆ε=δΦεε=φ
0 1n n

n
n

n
n (5.26)

where Φn are solutions of the governing differential equation, Eq. (5.1), and are generally
taken to be the eigenfunctions of the corresponding linearized sloshing analysis. The ∆n
are the free surface mode shapes for the appropriate Φn of the linear analysis. Since the
period or natural frequency of the nonlinear free oscillations is affected by the wave
amplitude, it is also necessary to introduce a nondimensional time parameter that
depends on the ε perturbation parameter:
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where ωi is the natural frequency of the mode for which nonlinear effects are to be
investigated; the Hn must be determined as part of the solution, by methods similar to
that described in Section 5.3.

The technique used to solve the equations to any order requires grouping the
coefficients in the equations so that a set of first order equations, a set of second order
equations, a set of third order equations, and so on, are derived. The solution of the first
order equations is used to solve the second order set, the second order set is used to solve
the third order set, etc. Details of the solution method depend on the problem (free or
forced vibrations, etc.) but the solution is approached in every case by the method of
finding successively better approximations.
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LLLLIQUIDIQUIDIQUIDIQUID    MMMMOTIONSOTIONSOTIONSOTIONS    ININININ    AAAA    SSSSPINNINGPINNINGPINNINGPINNING    TTTTANKANKANKANK

Most of the material in this chapter is not in NASA SP-106 and was newly written from the cited references.

6.1 Introduction
Spacecraft and rockets can be stabilized by spinning to make then gyroscopically stiff.
Spinning also moderates the effects of orbital solar heating. But like a gyroscope, a
rotating spacecraft precesses or nutates about its spin axis, as shown in Figure 6.1. The
spin axis then does not coincide with the angular momentum vector, and the spacecraft
appears to oscillate about its transverse x and y axes. This oscillation or nutation causes
the liquids in the tanks to move relative to the tank. If the spacecraft spins about a major
moment-of-inertia axis, the liquid motions tend to damp the nutation. But if it spins about
a minor moment-of-inertia axis, which is
common when the spacecraft is still
attached to the upper stage booster, the
liquid motions interact with the nutation to
increase the coning amplitude θc of the
spacecraft nutation. For this case, the
energy dissipated by the viscous liquid
motion  is an important measure of the
seriousness of the interaction [GARG, et al,
1986]. The viscous energy dissipation is
extracted from the spin kinetic energy of
the spacecraft, but the dissipation does not
lead to a gradually decreasing spin rate, as
might be thought at first, but instead it leads
to a gradually increasing nutation
amplitude.

If the nutation growth is left
unchecked, the spacecraft will eventually
enter a “flat spin” around its major moment
of inertia axis since this is the axis for
which the kinetic energy is a minimum for a
fixed amount of angular momentum [THOMSON, 1961]. Less catastrophic motions can
prematurely deplete the propellants used for the guidance and control thrusters [e.g.,
MARTIN, 1971; SLABINSKI, 1978; POCHA, 1987]. Liquid-filled artillery shells are subject to
the same kind of nutation instability, and for that reason liquid motions in a tank
spinning about its own symmetry axis have been the subject of considerable investigation
[e.g., STEWARTSON, 1959; STEWARTSON AND ROBERTS, 1963; KARPOV, 1965; GREENSPAN,
1969]. For many spacecraft, however, the tanks spin around an axis outside the tanks, so
this extensive body of artillery-shell knowledge cannot be directly applied to spacecraft.

Possible types of liquid motions in a spinning tank include spin-up and spin-down,
steady solid-body rotation, and oscillatory motions that occur after the spinning has
persisted long enough for spin-up transients to have disappeared. In this chapter, we are
concerned primarily with oscillatory, periodic motions superimposed on the liquid solid-
body rotation, and we will not discuss spin-up phenomena. The energy dissipated by the

θc
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ROCKET
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propellant tank

SPACECRAFT

spin axisangular momentum
vector

ϕ y

ϕ x

Figure 6.1.  Spinning spacecraft and upper
stage booster
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oscillatory motions is extremely large when the nutation excites the liquid into
resonance. For that reason, the natural frequencies of a liquid in a spinning tank are of
much interest.

As a result of Coriolis effects, the characteristics of resonant liquid motions in a
spinning tank can be quite different from the resonant motions in a non-spinning tank.
The differences depend on whether a particular liquid natural frequency is less than or
greater than twice the spin rate. In general, a liquid motion whose natural frequency is
greater than twice the spin rate resembles the free-surface sloshing discussed in the
previous chapters. A motion whose natural frequency is less than twice the spin rate,
however, has no counterpart in a non-spinning tank. This motion does not resemble free-
surface sloshing. In fact, the motion occurs throughout the liquid interior and is thus
called an internal or inertia oscillation. Since the nutation frequency for spinning
spacecraft is less than the spin rate, inertia oscillations are the more critical type of liquid
motions for spacecraft stability.

Experimental verification of liquid natural frequency predictions and mode shapes
is considerably more difficult for spinning tanks than it is for non-spinning tanks. The
usual kind of experiment merely monitors the growth rate of the nutation amplitude θc,
from which the energy dissipation rate is inferred.

Characterization of liquid motion regimes
The shape of the liquid free surface and the characteristics of liquid resonances are
functions of several dimensionless ratios. Letting Ω0 = spin rate, ωn = liquid natural
frequency, g = gravity or an equivalent thrust-induced acceleration, σ = liquid surface
tension, ρ = liquid density, and a = tank radius, we can derive three dimensionless ratios:
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The importance of the frequency ratio Ω* has already been implied above: Ω* = 1
separates the regime of free-surface sloshing-like motions (Ω* > 1) from the regime of
inertia-oscillation like motions (Ω* < 1). The two “centrifugal” dimensionless numbers
determine whether the shape of the liquid surface depends on surface tension (BoC < 1)
and whether the motions are more “gravity” like than “centrifugal” like (FrC < 1).

Nearly all the research on motions in a spinning tank has been for the conditions
FrC >> 1 and BoC >> 1 since those are the common conditions for a liquid-filled shell (Ω
is very large) and for a spinning spacecraft (g is very small). For these conditions, the
centrifugal acceleration pushes the liquid against the tank wall farthest from the spin
axis, and the free surface shape forms part of a cylinder whose axis is the spin axis; if the
spin axis is also the tank axis, the liquid forms a complete cylinder centered on the spin
axis. For conditions when FrC >> 1 and BoC << 1 (low gravity, very low spin rate), the
free surface shape is dominated by surface tension and resembles the curved low-g
shapes discussed in Chapter 4; this combination of conditions can only occur in space.
The regime for which FrC << 1 and BoC << 1, is not common for any spacecraft
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application; the free surface shape is practically independent of the spinning for these
conditions, and the ordinary Bond number is a more relevant parameter.

The conditions for which FrC << 1 and BoC >> 1 (slow spinning, large gravity,
nearly flat free surface), are similar to the conditions that prevail in normal high-g
sloshing, so the discussion of liquid motions starts with it.

6.2 Liquid Motions in a Slowly Spinning Axisymmetric Tank
When an axisymmetric tank in a gravitational field rotates around its symmetry axis so
slowly that FrC  ≤ 1 while at the same time BoC >> 1 (negligible surface tension), the free
surface shape is paraboloidal, as shown in
Figure 6.2. Even though these conditions are not
common in spacecraft applications, the theory of
liquid motions in a slowly spinning tank is more
easily explained than for more realistic cases, so
it will be reviewed here as an introduction to the
subject.

The motion of the free surface of a liquid
relative to an equilibrium state of uniform
rotation about a vertical axis has been the
subject of theoretical interest of
hydrodynamicists for many years (i.e., the
earth’s oceans), although the motions have
generally been analyzed on the basis of shallow
water theory for which the theory is especially
simple. The most striking feature of these
analyses is that rotation induces a splitting of
each liquid natural frequency into pairs. It has also been found that when the liquid depth
is not shallow, the liquid oscillations do not necessarily decrease in amplitude
exponentially with depth below the free surface, as it does for normal free surface
sloshing [MILES, 1959].

Although the liquid motion in a spinning tank is not irrotational as it for normal
sloshing, the basic theoretical equations are still fairly simple if the fluid velocities q (a
vector) are measured relative to the steady state rotation, and nonlinear products of the
velocities are neglected (just as in Chapters 2 and 4). Euler’s equations for an inviscid
liquid in a rotating coordinate system when nonlinear terms are neglected reduce to:






 +
ρ

−∇=××+×+
∂
∂ gzp

t
rqq ΩΩΩΩΩΩΩΩΩΩΩΩ2 (6.1)

where the spin axis is perpendicular to the radius vector r. This equation is simplified
further by introducing the acceleration potential ζ:

gzrp +Ω−
ρ

=ζ 22
02

1 (6.2)

The ζ potential specifies the pressure in excess of the steady state pressure caused by the
centrifugal and gravitational force fields. The free surface shape is therefore defined by
the condition ζ = 0 and p = 0. From Eq. (6.2) the shape is found to be a paraboloid: z – zo
= 0.5(rΩ0)2/g as indicated in Figure 6.2.
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Figure 6.2.  Free surface shape in a
slowly spinning axisymmetric tank
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The fluid motions are assumed to be harmonic in time with a frequency ω; hence
the time derivative in Eq. (6.1) can be replaced by iωq(r,θ,z) where now q is the spatial
part of the velocity. With these definitions and assumptions, we can derive a differential
equation for ζ by taking the divergence of Eq. (6.1) twice and using the fact that the
liquid is incompressible; this process gives:
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where ζ is now defined as only the spatial part of the acceleration potential. The
solutions of Eq. (6.3) must satisfy boundary conditions at the tank walls and bottom
(velocity perpendicular to the wall is zero) and at the free surface. Before giving these
conditions, the form of the differential equation needs to be discussed.

Unless the fluid motions do not depend on the z coordinate (one example, being
shallow water), Eq. (6.3) is elliptic when ω > 2Ω0 and hyperbolic when ω < 2Ω0. Since
normal high-g and low-g sloshing theory is governed by an elliptic differential equation
(i.e., Ω0= 0), the solutions of Eq. (6.3) will resemble ordinary sloshing when ω > 2Ω0. On
the other hand, hyperbolic differential equations arise mostly in compressible flows,
which admit the possibility of shock waves and other kinds of discontinuities. The
solutions for ω < 2Ω0 thus should not be expected to resemble ordinary sloshing.
Furthermore, there is no guarantee that the solutions of an hyperbolic differential
equation can be made to satisfy boundary conditions for an elliptic differential equation,
independently of any initial conditions from which the solution might arise.

Cylindrical tank
The particular tank shape for which the various solutions is discussed below is a cylinder
of radius a [MILES, 1959]. We will assume that the solutions depend on the angular
coordinate θ by trigonometric functions exp(imθ) [i.e., as sin(mθ) or cos(mθ)] just as for
normal sloshing; m = 1 designates the fundamental antisymmetric mode sketched in
Figure 6.2. With this assumption for the angular coordinate dependency, the acceleration
potential can be written as  ζ = F(r,z)exp(imθ). where as indicated F is a function that
depends only on r and z. The radial velocity u is given in terms of the function F by u =
(∂F/∂r)+(2ω/Ω0)F/r, and there is a similar expression for the axial velocity w.

The boundary condition at the cylindrical tank wall is u = 0 for r = a, and the
condition at the tank bottom is w = 0 for z = −h. The boundary conditions at the free
surface have to be applied to a curved surface, so the same kind of mathematical
difficulties occur as we found for low-g sloshing. To avoid these difficulties, we will
assume that the rotation is slow enough that the free surface is practically flat or
alternatively that the boundary conditions are imposed at the average surface location. In
either case, the free surface boundary conditions reduce to ω2F + g(∂F/∂z) = 0 at z = 0.

A suitable general solution of the differential equation is F(r,z) = Jm(kr)exp(κz),
where k and κ are two parameters related by κ = − k/[1 – (2Ω0/ω)2]1/2 and Jm is a Bessel
function. The parameter k is the eigenvalue of the problem and is determined by the
boundary conditions. The mathematical details of determining k, etc., are not discussed
here, but a summary of the results is given.

Motions for ωωωω > 2ΩΩΩΩ0 (slosh modes).  Since Eq. (6.3) is elliptic for ω > 2Ω0, its solutions
describe motions that resemble ordinary sloshing; that is, the motions are concentrated
near the free surface and the amplitude of the motion decreases with depth below the
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surface. Figure 6.3 shows the way the
natural frequency of the m = 1 fundamental
antisymmetric mode varies with spin rate,
for a tank having a liquid depth much
greater than the tank diameter. The splitting
of the normal sloshing mode into a higher
and lower frequency pair is clearly shown in
the figure.

As the spin rate is increased in Figure
6.3, a point is reached at which the lower of
the two liquid natural frequencies becomes
less than twice the spin rate, so for larger
spin rates free-surface sloshing should not
occur. The fact that sloshing motions are
still indicated to exist for ω < 2Ω0 in Figure
6.3 is a consequence of the approximations
used in satisfying the free surface boundary
condition. For the large centrifugal
accelerations and highly curved interfaces that occur when the spin rate is high, we
cannot consider only the vertical component of the velocity in satisfying the free surface
condition. By doing so, the axial motion is in effect suppressed, which means that the z-
component of the differential equation Eq. (6.3) disappears, so it is elliptic even when
ω < 2Ω0. Thus the results shown in Figure 6.3 if ω < 2Ω0 are not accurate.

Higher order antisymmetric modes and modes for which m > 1 are not greatly
affected by tank rotation. They are therefore not shown in Figure 6.3; some splitting of
these modes is present but only to a small degree.

Motions for ωωωω < 2ΩΩΩΩ0 (inertia oscillation modes)  The plots in Figure 6.3 apply to a tank that
has a liquid depth much greater than the tank diameter. For a tank of this shape, there are
no true resonances for which the natural frequency is less than twice the spin rate.
Apparently, inertia wave modes do not “fit” an infinitely deep tank. But when the liquid
depth is finite, the theory shows that there are many inertia wave modes [MILES. 1959].
The liquid motion associated with these modes does not decay exponentially with depth
below the free surface, as would a free surface sloshing mode, but persists all the way
through the liquid volume. These are inertia modes and they can occur only for a
spinning tank; free surface motions are not their most prominent feature. All the inertia
modes are “squeezed” into the frequency range between ω = 0 and ω = 2Ω0, a
characteristic which again is quite different from slosh modes for which the higher order
natural frequencies increase without limit. In fact, some of the m > 1 inertia modes have
lower natural frequencies than the m = 1 inertia modes. For these reasons, the mode that
creates the largest dynamics effects is not evident just from inspecting the natural
frequencies. According to MCINTYRE AND TANNER [1987], modes with only a few nodal
surfaces (an internal mathematical surface along which the velocity is zero) have the
greatest potential for interacting with a spacecraft nutation. This observation means that
for the critical modes, the motion is probably concentrated into an overall swirling or
vortex motion that “fills” the liquid volume. This observation is the physical basis of the
homogeneous vortex approximate analytical method described later.

Forces and moments.  Although the force and moments can be computed from the general
theory, it is not evident which inertia mode gives the largest forces and moments. But for
the sloshing modes, a conventional mechanical model would give a reasonable estimate
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of the forces and moments; the pendulum length would, however, have to be adjusted to
make the pendulum natural frequency match the results shown in Figure 6.3, with an
effective combined gravity equal to some average value, say (aΩ0

2/2 + g)0.5. For most
spacecraft applications, the forces and torques produced by free-surface sloshing are of
less importance than the inertia mode forces and torque, since as was stated earlier, the
nutation excitation frequency, which is less than the spin rate, tends to excite only the
inertia modes.

High spin rate results.  When the spin rate is large, the effects of gravity can be ignored and
the liquid is disposed within the tank as an annular cylinder whose axis coincides with
the spin axis and whose inner radius depends only on the fill fraction. A multiplicity of
inertia waves are predicted for this axisymmetric configuration, many of which exert
large disturbance torques on the tank [MILES AND TROESCH, 1961, DODGE, 1996].

6.3 Tanks off the Spin Axis – Exact Theory
Many spin-stabilized spacecraft contain tanks that are located off the spin axis. This
configuration does not lend itself to mathematical treatment in any standard coordinate
system. Hence, a numerical or some other approximate method is needed. Before
discussing these methods, an idealized case is
discussed, for which an exact analytical
solution can be found, to illustrate the general
characteristics of the liquid motions. The
idealized configuration is shown in Figure
6.4. The tank is a sector of an annular
cylindrical tank whose spin axis coincides
with the cylinder axis. Gravity is neglected
compared to the centrifugal acceleration (FrC
>> 1), and the undisturbed liquid is in a state
of steady rigid-body rotation. We might
consider this tank to be an idealized off-spin-
axis cylindrical tank having a diameter
roughly equal to the distance between the
radial walls. The figure shows a typical free
surface wave.

As usual, the eigenvalues and
eigenvectors of the problem are computed
first [WEIHS AND DODGE, 1991]. By assuming
an incompressible liquid and neglecting nonlinear products of the small oscillations
superimposed on the steady rotation, the following equations of motion and boundary
conditions are derived.
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Figure 6.4.  Rotating annular, sector
cylindrical tank
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Here, δ(r,θ,t) is the radial amplitude of the standing wave on the free surface r = B. Since
we are interested in oscillatory solutions, the velocities u, v, w, the free surface deflection
δ, and the pressure p are all assumed to vary as exp[i(kθ + lz +ωt)]. For this type of
solution, the boundary conditions at the walls and top and bottom surfaces require that:

( ) ... 2, 1, , 0      12 =
π
ϕ+±= mmk (6.5a)

( ) ... 2, 1, 0,      12 =π+±= j
C
Ajl (6.5b)

For oscillatory motions, the solution to Eqs. (6.4) reduces to a set of coupled ordinary
differential equations in the r coordinate, which can be written, for example, as:

0])14([ 222
0

222 =−−ωΩ+′+′′ PklrPrPr (6.6a)

( )[ ] ( )( )2
0 42 Ωω−′Ωω+−= PPrkiU (6.6b)

where the primes indicate differentiation with respect to r. Here, the perturbation
pressure p is written in dimensionless form as ρΩ0

2P(r) exp[i(kθ + lz +ωt)], the
perturbation u velocity is written as
AΩ0U(r) exp[i(kθ + lz +ωt)] and the
v and w velocities are expressed in a
similar form. The general solution
for the pressure function P is in
terms of Bessel functions; details
are given in WEIHS AND DODGE,
[1991]. It should be noticed that the
character of the governing
differential equation, Eq. (6.6a),
depends on whether ω is less than or
greater than 2Ω0.

Two-dimensional motions.  For the
case of an infinitely long tank
(C → 0 in Figure 6.4), two-
dimensional motions (l = 0) are
possible. For this case, the z
dependence of the velocities and
pressure disappears and the
governing differential equation is
elliptic. The motions are therefore
all of the free surface sloshing type. If we let n = ω/Ω0, the allowed values of n for these
two dimensional motions are determined by the differential equations and boundary
conditions; they turn out to be the roots of the following equation:
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( ) ( ) 02222 22 =−+++− −kk BknnBknn (6.7)

The roots of this equation are
plotted in Figure 6.5 for the
m = 0 and the m = 1
antisymmetric modes, for a
tank with a sector angle ϕ of
either 30° or 60°. For both
tanks, the natural frequency
decreases as the depth
approaches zero (B/A → 1),
just as for sloshing in a non-
rotating tank. And just as for
ordinary sloshing, the
fundamental antisymmetric
mode [in this case, m = 0
because of the way k is
defined in Eq. (6.5a)] has the
lowest natural frequency.

Three dimensional motions.
When the tank length is
finite, sloshing modes and inertia modes both exist. The general solution for this case is
too complicated for trends to be discerned easily. Therefore, results will be given for a
few specific examples that display the general trends.

Figure 6.6 shows some of the predicted slosh natural frequencies and the two
highest natural frequency inertia modes for a 30° sector tank having a depth ratio B/A =
0.8, and some similar results for a tank having B/A = 0.5. The shaded area corresponds to
the regime of free-surface sloshing; the symbolism (j,m) indicates that the curve is
plotted for the indicated values of j and m in Eqs. (6.5a) and (6.5b). There are also higher
harmonics for the inertia wave modes (ω < 2Ω0) but they are too densely packed to show
clearly in the figure.

There is a small range of liquid heights for which two natural frequencies exist for
some free-surface sloshing modes. It is interesting to note that many of the slosh modes
tend to the limit ω = 2Ω0 as the tank height decreases (i.e., as A/C becomes larger). Also,
when the radial liquid depth h = A – B decreases, the slosh frequency of a mode
decreases, just as for normal sloshing. In contrast to normal sloshing, however, the mode
disappears while the depth is still greater than zero.

Some investigators have modeled the sloshing responses in off-axis rotating tanks
as if the tank were not rotating but had an effective radial gravity equal to the centrifugal
acceleration at the free surface [ZEDD AND DODGE, 1984; GARG, ET AL, 1986; SLABINSKI,
1978]. Although from Figure 6.6, this approximation appears to be satisfactory for the
m = 0 antisymmetric modes for liquid depths B/A <≈ 0.9 and tank heights that are greater
than about one third the tank radius, it fails to predict the disappearance of the m = 0
modes when the liquid thickness is shallow in either the radial or axial direction.

The natural frequency of the highest frequency inertia wave mode increases
slowly as the tank height decreases (i.e., as A/C becomes larger). For tanks with a bigger
sector angle, the inertia wave frequencies tend to cluster around 0.6Ω0 to 0.7Ω0, over a
fairly wide range of liquid depth and tank height ratios, which indicates that this may be
a particularly dangerous range of nutation excitation frequencies.
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Forces and torques.  The forces and torques can be computed from the general theory. The
sloshing forces and torques can in fact be approximated by an equivalent mechanical
model as discussed above, so long as the radial or axial thickness of the liquid is not too
small. It is not evident, however, which inertia wave mode gives the largest forces and
torques since they all cluster rather closely in frequency space. Possibly a combination of
modes would be excited by a given nutation frequency; the approximate theory discussed
in the next section can be used to estimate these forces and torques.

6.4 Tanks Located off the Spin Axis – Approximate Theory
Many spacecraft tank shapes cannot be idealized as an annular sector cylindrical tank,
for which the exact theory was described in the preceding section. Hence, an
approximate analytical theory is needed. This section describes one such approximation,
called the homogeneous vortex model [PFEIFFER, 1974; EL RAHEB AND WAGNER, 1981,
DODGE, 1988]. The basic approximation is that all the details of the inertia waves in a
spinning, off-axis tank can be replaced by a concentrated vortex. The theory predicts a
single inertia mode, which presumably is the most important mode or combination of
modes.

Homogeneous vortex model
For the homogeneous vortex model, an unsteady velocity u is superimposed on the
steady solid-body rotation of the
liquid, and u is assumed to be
composed primarily of concentrated
vortices with whatever corrections
are needed to make the vortex-like
motion “fit” the tank shape. Figure
6.7 shows the general configuration
and the coordinate systems used in
the analysis. An X,Y,Z system is
fixed to and rotates with the spin
axis, and an x,y,z system is fixed to
the tank center, with the z axis
parallel to the spin axis. We will
usually let the Y axis point toward
the tank center. The tank rotates
around the spin axis at a steady rate Ω0. As usual, we will first predict the natural
frequencies and modes.

The homogeneous vortex assumption for the liquid velocity is expressed
analytically as:

( )ψψψψΩΩΩΩΩΩΩΩ ⋅∇−Φ∇−×= ru (6.8)

where the first term is the basic vortex motion, the second term is a velocity or scalar
potential Φ needed to allow free surface wave motions to exist, and the third term is a
vector potential ψψψψ correction that makes the vortex motion fit the tank shape. In general,
the vortex ΩΩΩΩ is composed of the steady rotation Ω0 and unsteady components Ωi = Ωx, Ωy,
Ωz about each axis. The equations are linearized by assuming that Ωi and Φ are small
quantities, as are the products Ωiψι. The linearized equations of motion are transformed
by the vector curl operation to express them in terms of vorticity rather than velocities.
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Then, the spatially varying quantities in the equations of motion are integrated over the
liquid volume V to eliminate the spatial dependence of the vorticity. This integration is
the point at which the analysis is simplified to the “homogeneous vortex” approximation.
The final result for the vector equation of motion is:

( ) ( )∫∫∫∫∫∫ Φ∇
∂
∂Ω−⋅∇

∂
∂Ω−=×Ω+ dV

zV
dV

zVdt
d 00

0 ψψψψΩΩΩΩΩΩΩΩΩΩΩΩ k (6.9)

In addition to Eq. (6.9), the liquid motion must satisfy the requirement of
incompressibility, which is the familiar Laplace equation imposed on both the Φ and ψψψψ
potentials; this equation is.

Vz,y,xii   volume thein         for        and        0 22 =ψ∇=Φ∇ (6.10)

Boundary conditions have to be considered to make the problem specific to a
given tank shape. The conditions on the tank wall, as usual, state that the liquid velocity
perpendicular to the wall must be zero; here this condition reduces to:

( ) wS surfaces  tank wall theon              and       0 rnnn ×−=∇⋅=Φ∇⋅ ψψψψ (6.11)

where n is the unit vector perpendicular to the walls. The boundary condition at the free
surface is not, however, so straightforward to derive. The equations of motion in a
rotating coordinate system have to be integrated to derive Bernoulli’s equation from
which the unsteady pressure can be set equal to zero at the equilibrium free surface
location. The equilibrium free surface shape itself is determined by the condition that the
static pressure is constant (e.g., zero) on it, and the general radius to this surface is
denoted by Rf. The deflection of the free surface relative to its equilibrium location is
denoted by the vector δδδδ(x,y,t). With these definitions, the analytical expression for the
pressure p = 0 at the free surface reduces to the following expression:

( ) ( ) ukrgRkk f ×Ω−×−=



 ⋅+×Ω×Ω+

∂
⋅+Φ∂−∇ 000 dt

d
t

ΩΩΩΩδδδδψψψψΩΩΩΩ (6.12a)

Even with the homogeneous vortex assumption, Eq. (6.12a) cannot be integrated
rigorously. It is argued that the first term on the right hand side of Eq. (6.12a) only
changes the phasing of the free surface motion relative to the homogeneous vortex, and
the second term on the right does not change the energy of the motion, since it is normal
to the velocity. Thus, these two terms are neglected, and the free surface pressure
condition is then expressed as:

feff Sg
dt
d

t
 surface free  theon      δ=⋅+

∂
Φ∂ ψψψψΩΩΩΩ (6.12b)

where δ is now the free surface deflection normal to the curved equilibrium free surface
and geff is the effective gravity at the free surface (a combination of centrifugal and
gravitational accelerations); note that geff is constant in magnitude everywhere on this
surface Although the assumptions leading to Eq. (6.12b) might appear to be overly
simplified, their consequences are not critical. As we observed in earlier sections, the
natural frequencies of the free surface motions are higher than the natural frequencies of
the internal, inertia wave motions. Thus, the two kinds of motions are nearly independent
of each other, so even if the boundary condition at the free surface is an approximation, it
should not significantly affect the more important inertia wave solution.

We also need a kinematic condition at the free surface. This condition is expressed
as:
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The first of Eqs. (6.13) and Eq. (6.12b) can be combined to give:
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The general method of constructing a solution to these equations is first to set the
right hand side of Eq. (6.14) equal to zero. This gives a standard eigenvalue problem for
the potentials Φ and ψi. After the scalar potential eigenfunctions φk, k = 1,2,3,…, are
obtained, the Φ potential is expressed as a series of the eigenfunctions φi with arbitrary
expansion coefficients λk(t). The full form of Eq. (6.14) is then used to determine the
coupling between the Φ motions and the ψi motions. A typical Fourier expansion is
sufficient for this purpose, such that the resulting equation for the kth slosh mode is:
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where ωk is the natural frequency of the mode. These equations relate the vorticity Ωi for
i = x,y,z to the slosh modal amplitudes
λk. The spin rate and tank shape are
related to λk and the Ωi by Eq. (6.9).

The solution to the above set of
equations can be found by purely
analytical means only for some tank
shapes. For most tank shapes, the
solution has to be computed by finite
difference computer codes or by other
numerical methods. The general
characteristics of the solutions are
illustrated below for a tank shape for
which an analytical solution can be
found.

Analytical/Numerical Example
As an analytical example of the homogeneous vortex model, a parallelepiped tank is
considered. The tank and the coordinate systems are shown in Figure 6.8. The spin axis
is aligned with the Z axis, and the free surface is located a distance Rf along the Y axis
from the spin axis. The distance Rf is supposed to be large enough that the cylindrical
shape of the free surface can assumed to be effectively flat. The x,y,z coordinate system
is located at the center of mass of the liquid and is fixed to the tank. For numerical
results, we will set Rf = 8, L = 2, W = 1.5, and H = 1.

The solution for the vector potentials that satisfies Eq. (6.10) and the boundary
conditions Eqs. (6.11) and (6.13) is:
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R f
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Figure 6.8.  Tank and coordinate system for
example of homogeneous vortex model
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The first few two-dimensional antisymmetric slosh waves along the z axis and the
corresponding natural frequencies that satisfy Eq. (6.10) and boundary conditions Eq.
(6.11) and Eq. (6.14) (with the right hand side set equal to zero) are:
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The first few two-dimensional antisymmetric slosh waves along the x-axis are:
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The lowest frequency three-dimensional antisymmetric slosh wave is described by:
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There are also symmetrical slosh waves that satisfy the boundary conditions.
When these φi and ψi functions are inserted into Eq. (6.15) we find that the φ11

slosh mode is coupled to the x component of the unsteady vorticity by:

( ) 2
11

2
0

2 086117625 xo.. Ω=λΩ+ω− (6.18a)

where ω is the frequency of the liquid motion and Ωxo is the amplitude of the Ωx vortex.
Likewise, the coupling equations for a few of the other slosh modes are:

( ) 2
12

2
0

2 0300084718 xo.. Ω=λΩ+ω− (6.18b)

( ) 2
31

2
0

2 5519036110 yo.. Ω=λΩ+ω− (6.18c)
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32
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2 1468062720 yo.. Ω=λΩ+ω− (6.19d)
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( ) 2
33

2
0

2 1932090625 yo.. Ω−=λΩ+ω− (6.19e)

As can be seen, the symmetry of this problem makes the coupling equations relatively
simple, since no slosh mode is coupled to both the x and y components of the vorticity.
Furthermore, none of the slosh modes is coupled to the z component of the vorticity.

With the functions for φi and ψi given previously, the equations of motion, Eq.
(6.9), reduce to:

3303203100 051500646012607910 λΩ+λΩ+λΩ−=ΩΩ−Ωω− ....i yoxo (6.20a)

1201100 246012605410 λΩ−λΩ=ΩΩ+Ωω ...i xoyo (6.20b)

All the components of the Ωzo equation are equal to zero, which means that there is no
unsteady vorticity around the spin axis.

There is only root ω1 of Eqs. (6.20) that is smaller than 2Ω0, so presumably this
root corresponds to inertia mode. The other roots ωi > 2Ω0 correspond to free surface
slosh modes. Since five slosh modes were retained, there are six natural frequencies: ω1 =
0.6634Ω0; ω2 = 2.368Ω0; ω3 = 3.2171Ω0; ω4 = 4.342Ω0; ω5 = 4.542Ω0; and ω6 = 5.089Ω0.
The slosh mode frequencies (i > 2) are almost identical to the uncoupled slosh mode
frequencies given by Eqs. (6.17). The inertia mode frequency ω1 = 0.6643Ω0 is in the
same numerical range as the inertia wave frequencies predicted by the exact theories
discussed earlier.

For this numerical example, we first set ω = ω1 and give the vortex amplitude Ωxo a
unit amplitude; we find that the amplitude of the y-component vortex Ωyo is 0.835, and
the slosh mode amplitudes are λ11 = 0.098; λ12 = 0.00076; λ31 = 0.0245; λ32 = 0.0032; and
λ33 = 0.0042. The relatively small magnitude of the slosh wave amplitudes proves that
the ω1 = 0.6634Ω0 mode is in fact an inertia mode. Conversely, when ω = ωi, i > 2, and
the amplitude of one of the slosh modes is given a value of unity, the amplitudes of the
unsteady vorticities are very small, indicating that these modes are in fact free surface
modes with only a little inertia mode contribution.

Axisymmetric tanks.
Other tank shapes can also be analyzed
by the homogeneous vortex model, but
the φi and ψi potentials generally have
to be found numerically. Figure 6.9
shows typical results for  cylindrical
and spherical tanks, as a function of
tank fill level [CUTSHALL, et al, 1996].
The distance of the tank center from
the spin axis was assumed to be 2.4
times the tank radius for these
computations, but the results are
reasonably insensitive to this
assumption.

Forces and torques.
We will show later that an inertia wave
mode does not exert a net force on a tank but only a net torque. To compute the torque,
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the general tank configuration shown previously in Figure 6.7 is assumed to have a
nutation motion that is equivalent to a simple harmonic oscillation around the X and Y
axes. The angular velocity of the nutation is ϕo and the frequency is µ. For a nutation, the
angular velocity around each axis (see Figure 6.1) is of the same magnitude but different
in phase; hence:

( ) ti
o ei µ−ϕ=ϕ ji (6.21)

The nutation causes the tank to oscillate laterally up and down and side to side as well as
to oscillate angularly about the liquid center of mass. The angular motion of the tank
excites both slosh modes and inertia modes, whereas the lateral motion excites only slosh
modes. According to the homogeneous vortex model, the forces and moments of the
slosh modes can be approximately analyzed just as for a non-spinning tank since the
coupling between the slosh and inertia modes is negligible. Consequently, the slosh
forces and torques will not be discussed here, and the coupling between the inertia
modes and the slosh modes will be neglected..

For this unsteady rotation of the tank, the forced motion counterparts of Eq. (6.9)
are:

oyoyxxo iWi ϕµ−=ΩΩ−Ωµ 0 (6.22a)

oxoxyyo Wi ϕµ=ΩΩ+Ωµ 0 (6.22b)

where Wxy and Wyx are the integrals of ψi indicated in Eq. (6.9). In this approximation,
the inertia wave natural frequency ω1 is equal to (WxyWyx)0.5. The amplitudes of the
homogeneous vortex can be found readily from Eqs. (6.22):
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The vortex amplitudes become indefinitely large when the nutation frequency µ is equal
to the inertia mode frequency ω1. Just as was the case for the sloshing theory discussed in
Chapter 1, this prediction of infinitely large motions is caused by the neglect of viscous
effects. Damping can be introduced after-the-fact by a boundary layer analysis, just as
for the sloshing analyses. (This topic is discussed in the Appendix to this chapter.)

There are, however, more serious conceptual physical difficulties with Eqs. (6.22)
and (6.23) than just the absence of damping. These equations, which were derived by
writing them in a rotating accelerating coordinate system, indicate that the amplitude of
the vortex motion does not directly depend on the shape of the tank. This is clearly an
approximation, because, for example, an unsteady rotation of a spherical tank about its
own center would not cause any motion of an ideal, inviscid liquid; the tank would
merely slide around the liquid. EL RAHEB AND WAGNER [1981] therefore argue that the
terms retained on the right hand side of Eqs. (6.22a) should be neglected, and that the
vortex motion is driven only by its coupling with the slosh modes [Eq. (6.18)]. The
forcing of the slosh potential Φ does in fact depend on the tank shape, as can be seen
from Eqs. (6.11), so this would make the excitation of the inertia modes also depend on
the tank shape. But the EL RAHEB AND WAGNER approach is not trouble-free, either, since
for a tank shape such as a cylinder, an unsteady rotation of the tank is transmitted
directly to the liquid. At this point, we just accept the fact that Eqs. (6.22) may
sometimes lead to unrealistic amplitudes of the inertia mode for tank shapes such as a
sphere, for which an unsteady rotation of the tank is not coupled strongly to the liquid. It
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might be noted, however, that liquid motions in exactly those tank − for which the
direction of the liquid pressure force acting on an element of the tank wall passes
through the tank center − exert no net torque on the tank. Hence, the consequences for
tanks for which Eqs. (6.22) are not particularly valid may not be particularly serious.

To compute the torque, an expression is needed to relate the liquid pressure to the
tank motion. From the equations of motion expressed in a rotating coordinate system,
this expression is found to be:
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where r is the vector from the center of the tank to a point in the liquid, Rs is the vector
from the origin of the X,Y,Z coordinate system to the tank center, and R = Rs + r. Since
the interest is in the inertia wave mode, the free surface slosh potential Φ is neglected as
being coupled only very weakly to the inertia mode. Thus, after the integrals in this
equation are evaluated, the required expression for the pressure on the tank walls is:
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Here, Xo, Yo, Zo are the coordinates of the center of the tank, and nx, ny, and nz are the
unit normal vectors at a point on the tank walls.

When the pressure is integrated over the tank walls, the net force is found not to
contain any components that depend on the unsteady vorticity; that is, the inertia mode
does not exert a net force on the tank, and the only force is a rigid-body like reaction.
The torque exerted on the tank about the liquid center of mass is, however, not zero. By
integrating the pressure over the tank walls, the unsteady torque is found to be::
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where Ix, Iy, Ixy, and Iyx are volume integrals of ψx and ψy. There are also rigid-body like
torques that are not included in Eqs. (6.25). The form of Eqs. (6.25) is the same as the
torques produced by a precessing rigid body when the amplitude of the body’s
precession is proportional to the amplitudes of the inertia wave oscillation [DODGE, ET AL,
1994]. For a spherical tank, Ix, Iy, Ixy, and Iyx are all zero; this is a consequence of the fact
that all the elemental pressure forces are directed through the center of the tank for a
sphere.

For the parallelepiped tank example discussed previously, Eqs. (6.25) reduce to:
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where V is the liquid volume and Ωxo and Ωyo are given by Eqs. (6.23).
For a general case, the torque amplitudes from Eq. (6.25) are expressed in the

from:
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where the subscript x indicates the torque is exerted around the x axis and similarly for
the subscript y. The parameter L is the characteristic dimension of the tank, which is the
height of a cylindrical tank and the radius of a spherical tank. For the parallelepiped tank
example, the x-torque parameters are A = 0.0785, B = 0.229, and C = 0.090; the y-torque
parameters are A = 0.115, B = 0.354, and C = 0.231. Figure 6.10 shows the values of the
A, B, and C parameters for a cylindrical tank located 2.4 tank radii from the spin axis, as
a function of tank fill level [CUTSHALL, ET AL, 1996]. For the reasons discussed earlier, A,
B, and C are equal to zero for a spherical tank.

6.5 Energy Dissipation

Nutation time constant
In Section 6.1, the effects of energy
dissipation on the stability of
spacecraft spinning around a minor
moment-of-inertia axis were discussed
briefly. Energy dissipation for such a
spacecraft leads to an exponential
growth of the nutation coning angle θc
that must be checked by the use of
attitude control thrusters. Hence, it is
important to know the time constant τ
of the nutation growth rate, defined by
the relation θc = θcoexp(t/τ). If the
energy dissipation mechanism is
considered to be a passive device, the
time constant and the energy
dissipation rate E are related by the energy sink model [THOMSON, 1961]; this model
predicts the relation between E, θc, and τ to be:

E
I cs

2
0µθΩ=τ (6.28)

where Is is the moment of inertia about the spin axis and µ is the nutation frequency.
When the energy dissipation is large (e.g., a resonance of the liquid motion), the time
constant is short, which implies that the nutation will grow rapidly if not checked.

For many mechanisms that dissipate energy, including small amplitude sloshing
and inertia waves, the energy dissipation rate is proportional to the square of the nutation
amplitude (i.e., the square of the nutation cone angle). For these conditions, as shown by
Eq. (6.28), the time constant does not depend on the nutation amplitude θc.

When the mass of the dissipative component is not small (e.g., liquid in large
tanks), the energy dissipation mechanism is not necessarily passive, because the motion
of the component itself may directly interact with the spacecraft motion. Part of the
spacecraft rotational kinetic energy then oscillates back and forth with the dissipating
component, and this can also lead to nutation growth even without energy dissipation.
But even for non-passive dissipators, it is customary to define a nutation time constant.
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Experimental methods
Because of the critical effect of energy dissipation on the stability of a spinning
spacecraft, it is usually a requirement to measure the nutation time constant or an
equivalent parameter experimentally before the flight of any spacecraft that contains a
significant quantity of liquid in its tanks. Several experimental methods can be used to
determine the time constant, as discussed below.

Air-bearing spin-table method. In this method, a dynamically-scaled spacecraft model is
mounted on a platform supported by an extremely low-friction air bearing and placed in
a large vacuum chamber to minimize aerodynamic drag [PETERSON, 1976; NEER AND
SALVATORE, 1972; MARCÉ AND ASSEMAT, 1980]. The platform is spun up by motors to the
desired speed, and after a steady state is achieved, all restraints are removed and the
spacecraft model is allowed to spin and nutate freely. The time history of the cone angle
is monitored. The energy dissipation rate is inferred from Eq. (6.28). The dissipation rate
is adjusted as necessary to compensate for any significant differences between the
viscosity of the test liquid and the spacecraft liquid. Results from air-bearing tests have
usually – but not always – been found to be reasonably well correlated with on-orbit
data. The results are specific to the spacecraft in question.

Free fall method.  In the free-fall method, a small scale model of the spacecraft is allowed to
fall freely for a short period of time while spinning. The principal test measurement is
the growth of the nutation cone angle. The free-fall method has generally supplanted the
air-bearing spin table method since tests can be conducted more economically and
without the need for a vacuum facility; in addition, the perturbing effects of gravity are
removed so the test more nearly duplicates in-space conditions [HARRISON, GARG, AND
FUROMOTO, 1983]. But because of the limitations imposed by available drop towers, the
size of the spacecraft model used in a free fall test has to be quite small, and very high
spin rates are required to accumulate enough nutation cycles to measure the cone angle
growth in the time available. Hence, test conditions have to be determined by the
principles of dynamic similarity, such that, for example, the Reynolds number of the
liquid based on spin rate is the same for the model tank and the spacecraft tank. The
scaling has been found to be reasonably successful for tanks without internal hardware or
for tanks that contain only rigid baffles or other rigid (i.e., non-energy dissipating)
hardware. If the time constant is judged to be too short, various kinds of baffles are
inserted in the tank until an acceptable time constant is found empirically [POCHA, 1981].
Just as for the air bearing method, the test results are specific to the spacecraft in
question.

Forced motion spin-table method.  Both the air-bearing method and the free-fall method are
ill suited for general investigations of liquid motions in spinning tanks. For example, to
investigate liquid resonances parametrically, the nutation frequency has to be varied
while the spin rate is held constant, and this is difficult for a freely nutating model since
the only way the nutation rate can be changed is to change the mass distribution of the
model spacecraft. Consequently, another method – called the forced-motion spin table
method – has been developed to investigate general liquid motions. For this method, the
spin table is driven by a set of electric motors whose rotation rate can be adjusted
individually to cause the spinning table to execute a nutation-like motion [MARTIN, 1971;
GARG, FUROMOTO, AND VANYO, 1984; GUIBERT, 1986; ZEDD AND DODGE, 1985; CHATO, ET
AL, 1998]. The spin rate and nutation frequency can be varied independently from test to
test by changing the speeds of the motors, and the cone angle can be varied by changing
the tilt of the table relative to the spin motor axis. However, the nutation time constant
obviously cannot be measured since the cone angle is not a function of time. Instead, the
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energy dissipation rate has to
be measured from the
electrical power consumption
of the motors or inferred
from liquid force and torque
measurements. Since the
tanks on the spin table are
exposed to the perturbing
effects of gravity, the spin
rate also must be kept high to
ensure that the centrifugal
acceleration exerted on the
tank is much larger than the
gravitational acceleration.
However, even with these
limitations, the ease with
which the parameters of the
motion can be controlled
makes this method ideal to
investigate energy dissipation rate correlations as a function of tank shape, fill level, etc.

ZEDD AND DODGE [1984] used a forced-motion spin-table to measure the liquid
forces and torques for a partially-full spherical tank one foot in diameter whose axis was
32 inches (2.67 tank diameters) from the spin axis. The load cell measurements were
corrected to account for the rigid body torques of the tank itself, its mounting structure,
and the equivalent frozen or rigidified liquid. The torque and force remaining after these
rigid body torques were subtracted was assumed to be due to the motion of the liquid
relative to the tank. Figure 6.11 shows the torque results as a function of nutation
frequency for a set of tests conducted at a spin rate of 60 rpm. Two different liquids were
used: water and a water-glycerol mixture that had a viscosity ten times that of water.
Three different values of the cone angle were tested. The nutation frequency was varied
from nearly zero to  nearly the spin rate. As can be seen, there is quite a bit of scatter in
the data (especially for higher nutation frequencies, for which the nutation angular
velocity approached zero for the particular mechanical arrangement of the spin table ).
Nonetheless, the best fit to the data shows that the torque per unit nutation angular
velocity is roughly constant over the range of tested nutation frequencies, which is the
expected result.

The energy dissipation rate was computed from the test results by integrating the
product of the non-rigid body torque and the tank nutation rate (angular velocity) over
one cycle of the motion. From all the tests conducted for spin rates from 20 rpm to
100 rpm, it was found that the energy dissipation rate was adequately correlated by:
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νΩρϕ= (6.29)

where ρ and ν are the liquid density and kinematic viscosity, d is the tank diameter, FW is
the fraction of the tank wall that is wet by the liquid, and ϕ0 is the nutation angular
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velocity.17 The energy dissipation rate E is
proportional to the square root of the
effective Reynolds number, just as it is for
laminar flow. There was no evidence of
inertia wave resonances in these tests,
which was not unexpected for a spherical
tank for reasons discussed previously.

A similar but considerably smaller
spin table was used in a space experiment
that investigated liquid motions in spinning
tanks in zero-g [CHATO, ET AL, 1998]. The
test tanks were spheres and cylinders
having a diameter of 4.5 inch. For the
spherical tanks with a spin rate of 20 rpm,
a nutation angular velocity of 1 rpm, water
as the test liquid, and fill levels of 33% and
67%, energy dissipation rates were inferred
from the test torque data (by the method
discussed above) to be in the range from
0.00005 to 0.0004 in-lb/sec. For these
conditions, Eq. (6.29) predicts an energy
dissipation rate of about 0.0005 in-lb/sec, which is of the same magnitude as the space
experiment results.

Energy dissipation rates were also determined for the cylindrical tanks, which had
a height-to-diameter ratio of h/d = 1. The computed energy dissipation rates for nutation
frequencies that did not excite liquid resonances were somewhat smaller than for the
spherical tanks. (Resonances were observed for cylindrical tanks.)

Figure 6.12 shows a different kind of forced-motion spin-table that measures the
energy dissipation rate directly. This method is especially applicable to spherical tanks
located on the spacecraft spin axis [VANYO, 1973; GARG, FUROMOTO, AND VANYO, 1984].
To measure the energy dissipation, a preliminary test has to be run without liquid in the
tank to determine the electric power consumption required to overcome the bearing and
aerodynamic frictional losses. For data tests when the tank contains liquid, the electrical
power measured in excess of the frictional losses is the energy dissipation rate caused by
liquid motions. Test results are correlated by expressions of the form:
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where mliquid is the mass of liquid in the tank and K is a numerical parameter of order
unity. This expression is equivalent in form to Eq. (6.29) since the nutation rate ϕ0 in Eq.
(6.29) is proportional to the product of the nutation frequency and the cone angle, and
the nutation frequency µ in Eq. (6.30) is proportional to the spin rate.

                                                     
17 For a freely spinning body such as a axisymmetric spacecraft, the nutation rate is given by ϕ0 =

θcΩ0(Is/It) where Is and It are the spin axis and transverse axis moments of inertia. For a forced motion
spin table, the nutation angular velocity depends on the mechanical arrangement of the spin and nutation
motors, but it is proportional to the cone angle.
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Analytical methods
Analytical methods of predicting energy dissipations are not as reliable as experimental
methods because of the lack of an accurate analytical model of liquid motions in a
spinning, nutating tank. Various kind of viscous boundary layer corrections to the
homogeneous vortex model have been suggested [EBERT, 1984] and boundary layer
corrections have also been employed with finite-element solutions of the complete
equations of motion for an inviscid liquid [AGRAWAL, 1993; POHL, 1984]. Even the finite-
element models are limited by the inability of a model of inviscid fluid motions to be
coupled in an unambiguous way to the motions of the tank. A complete solution of the
Navier-Stokes equations, including viscosity from the start, would seem to be required.

A relatively simple analytical method of estimating the energy dissipation rate is
discussed in the Appendix to this chapter. It is based on a viscous boundary layer
correction to the homogeneous vortex model, and it employs the analytical solution
discussed earlier for a parallelepiped tank. To estimate the energy dissipation rate for
another tank shape, an equivalent parallelepiped tank would have to be defined in terms
of the volume, free surface area, and other relevant parameters of the actual tank.

6.6 Stability of a Rotating Interface in Zero-G
The stability of a static liquid-vapor interface in zero-g was discussed in detail in Section
4.4. The stability of the interface in a rotating tank is also of interest, especially with
respect to the separation of the liquid and gas phases in the tank.

For the special case of zero Bond number, contact angle equal to zero, and an
annular tank, the stability criterion for the interface was investigated by SEEBOLD AND

REYNOLDS, [1965a, 1965b]. They found that the critical rotation rate Ωc is given by:
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2

1
14
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where R0 and Ri are the outer and inner radii of the annulus, σ is the liquid surface
tension, and ρ is the liquid density. When the spin rate exceeds Ωc, the liquid is thrown to
the outer walls of the tank. A general axisymmetric tank can be treated by setting Ri = 0
in Eq. (6.31).

Equation (6.31) indicates that liquid in zero-g can be completely separated from
the vapor in a large tank for very low rotation rates. For example, when R0 = 1.5 m and
for typical liquid properties, a rotation rate of two revolutions per hour will produce
complete separation of the liquid and gas in the tank (after a steady state rotation is
achieved). Drop tower experiments have proved in fact that Eq. (6.31) is slightly
conservative.

More general stability criteria have been examined by numerical solutions to the
equations of motion [e.g., GANS AND LESLIE, 1987]. In addition, the stability of the basic
inertia wave motion in rotating tanks has also been examined. It has been found that for
excitation frequencies close to a liquid resonance, where large amplitude waves are
excited, the inertia modes become unstable and exhibit many characteristics of chaotic
behavior [MCEWAN, 1970; MANASSEH, 1992; TAN, 1994]. Unstable modes create
exceptionally large energy dissipation rates. Hence, this is another reason why it is
important to avoid liquid resonances in spinning spacecraft.
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Appendix.  Analytical Energy Dissipation Estimate
The vector potential ψψψψ for a parallelepiped tank was discussed in Section 6.4 and was
given analytically by Eqs. (6.16). These solutions are used here to estimate the energy
dissipation. As was also explained in Section 6.4, only the ψx and ψz components of ψψψψ
actually influence the liquid motions. Furthermore, free surface sloshing is neglected
here as being a small correction to the vortex motion, so Φ = 0. The integrals on the right
hand side of Eq. (6.9) can therefore be evaluated to give:

( ) ( ) ( ) ( )[ ]L,HL,HL,HL,H
V
WW xxxxyx −−ψ+−ψ−−ψ−ψ= 2 (A.1)

( ) ( ) ( ) ( )[ ]L,WL,WL,WL,W
V
HWxy yyyy −−ψ+−ψ−−ψ−ψ= 2 (A.2)

The natural frequency of the inertia wave mode is given in terms of these integrals by:

)1)(1(0 xyyxn WW −+Ω=ω (A.3)

where Ω0 is the tank rotation rate. The ratio of the amplitude of the y-axis vortex strength
to the x-axis vortex strength is also given in terms of these integrals:












−
ΩωΩ−=Ω

xy

n
xoyo W1

0 (A.4)

The magnitudes of the unsteady vortices will eventually be needed to compute the
energy dissipation rate from the boundary layer correction to the homogeneous vortex
model. In terms of a viscous damping coefficient γ, the amplitude of the x-component Ωxo

of the homogeneous vortex is given by the expression:
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where ω is the oscillation frequency (generally the nutation frequency) and ϕ0 is the
amplitude of the unsteady angular velocity of the tank (usually, ωθc where θc is the
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nutation cone angle). This relation is a modification of Eq. (6.23) that incorporates
viscous damping.

To damping coefficient γ can be computed, as shown by Eq. (2.2) in Chapter 2, by
the ratio of the energy dissipation rate to the maximum energy of the inertia wave mode.
Fortunately, this ratio can be computed without knowing in advance the actual
amplitudes of the vortex motions Ωxo and Ωyo.

The maximum kinetic energy E of the inertia wave oscillation is computed by
integrating the square of the liquid velocity over the liquid volume. (There is no potential
energy contribution to the total energy.) The result is:
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where V is the liquid volume. The energy dissipation rate is computed from the viscous
boundary layer correction model [DODGE AND GREEN, 1999] . The dissipation is given by:
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where ν is the kinematic viscosity of the liquid and F is a function defined below. As can
be seen, the Ωx0/Ω0 ratio in both Eqs. (A.6) and (A.7) will cancel out when their ratio is
formed.

The F function is given in terms of a set of other intermediate functions Ci by the
expression:
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and the various Ci functions are defined as follows:
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The damping coefficient is defined as:

nE
dtdE

ω
=γ

2
(A.10)

and its value is calculable from Eqs. (A.3), (A.6) and (A.7).
After γ has been calculated, the magnitude of Ωxo can be computed from Eq. (A.5)

for a given nutation frequency and nutation angular velocity; knowing Ωxo, the
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magnitude of Ωyo can be found from Eq. (A.4). With Ωx0 and Ωψο known, the energy
dissipation rate can be computed from Eq. (A.6).
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SSSSPACECRAFTPACECRAFTPACECRAFTPACECRAFT    SSSSTABILITYTABILITYTABILITYTABILITY    ANDANDANDAND    CCCCONTROLONTROLONTROLONTROL
This chapter is a very brief summary of Chapter 7 “Vehicle Stability and Control”. The original author was HELMUT
F. BAUER of Georgia Institute of Technology.

7.1 Introduction
Since liquid propellants constitute the largest part of the total mass of many spacecraft
and launch vehicles, the interaction of sloshing liquids with the trajectory of the flexible
vehicle is important throughout the flight. The problems that need to be considered are
how to assess the influence of this interaction on vehicle stability and control, and how
to increase the stability by a proper choice of the control system and its gain values or by
the adding of baffles to provide additional damping to the sloshing. These problems are
discussed in this chapter by relatively simple, illustrative analyses using an example of a
non-spinning launch vehicle during powered flight. The subject is covered in greater
detail and generality in many textbooks [e.g., BLAKELOCK, 1991; SALI, 1997].

The analyses start by deriving the equations of motion for a vehicle that
experiences small perturbations to its flight path. Then a control law is assumed and
coupled to these equations. Finally, methods that can be used to solve the equations are
discussed to the point at which it can be determined whether the perturbations to the
trajectory increase with time (which represents an unstable flight) or decay with time (a
stable flight).

7.2 Simplified Equations of Motion
Figure 7.1 shows a schematic of a launch vehicle in flight and shows the coordinate
systems used in the analyses. The X,Y system shown in the figure is a stationary inertial
system, and the x,y system, which is fixed to the vehicle center of mass, accelerates with
the vehicle. For simplicity, the motion of the vehicle is assumed to occur in the x,y plane.
For the undisturbed trajectory, the X and x axes coincide with the vehicle axis; that is, the
rotation ϕ of the vehicle and the displacement y of the center of mass are equal to zero,

η
 Ys

ϕ

Y, y

X

x

β

F2

F1

ψ
1

ψ
2

Bending mode shape

slosh model
pendulum mass

y

center of mass

Figure 7.1.  Coordinate systems for a space vehicle



7.  VEHICLE STABILITY AND CONTROL

158

and the flight path is aligned with the x-axis. The vehicle ϕ, y displacements and the
displacements of the slosh masses are assumed to be small, to allow the equations to be
linearized with respect to them. The component of  the acceleration of the x,y system
along the flight path is created by the engine thrust. Aerodynamic effects are neglected,
as are centrifugal and Coriolis forces resulting from rotations. Vehicle control is
obtained by gimbaling (i.e., swiveling) the engine. Only a part F2 of the engine thrust can
be gimbaled; the other part F1 remains aligned with the vehicle centerline.

In line with the simplified nature of this example, sloshing in the upper stages is
neglected, and only the fundamental bending mode of the overall vehicle is considered.
The shape of the bending mode is denoted by Yv(x), and it is normalized such that the
deflection is unity at the engine swivel point; the actual amplitude of the mode is denoted
by η. The vehicle translation is given by y. The deflections of the two slosh masses from
the tank centerline are given by ψ1 and ψ2, respectively. The small angle β specifies the
angle of the gimbaled part of the force with respect to the tank centerline.

To derive the equations of motion for the stability and control analysis, we will
employ the Lagrange method in the form [SYNGE AND GRIFFITH, 1959]:
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Here, KE and PE are the kinetic and potential energies of the system, and D is the
damping or energy dissipation function. The generalized coordinates are represented by
qi. Each qi is independent of the others, which means that, for example, the displacement
of a point in the q1 direction does not change the value of the q2, q3, … coordinates of the
point. The generalized coordinates for this problem are y, ϕ, ψ1, ψ2, and η. The
generalized forces Qi are the external forces applied in the qi directions. To use Eq. (7.1)
we have to develop expressions for the various kinetic and potential energies, the rate of
energy dissipation, and the generalized external forces.

The equation of motion for the vehicle in the flight path direction merely states
that the thrust force F1 accelerates the vehicle along this path. This equation does not
directly affect vehicle control. Hence, only the equations of motion for the perturbations
of the vehicle flight path are considered, and these equations are written relative to the
accelerating flight path.

Kinetic energies.   The system kinetic energy is composed of the energy of the empty (rigid)
space vehicle, the energy of the sloshing liquid propellants, and the energy associated
with the vehicle structural deflections.

The translational velocity v and the angular velocity ω of a point on the vehicle are
the sum of translation, rotation, and bending displacements. They are given by:

vv YYxyv ′η−ϕ=ωη+ϕ−= &&&&&            (7.2)

where superscript dots indicate differentiation with respect to time and superscript
primes indicate differentiation with respect to x. These expressions have been linearized
with respect to y, ϕ, and η. The kinetic energy of the empty vehicle is thus:
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Here, mev is the mass of the empty vehicle per unit length and Iev is the mass moment of
inertia per unit length of the elemental segment dx. The integrations in Eq. (7.3) are
performed over the entire length of the vehicle.
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The kinetic energy of the propellant is obtained from a pendulum mechanical
model. The sloshing masses move relative to the tank, so the kinetic energy of the liquid
in the two propellant tanks is given by:
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where x0j is the location (relative to the loaded vehicle center of mass) of the jth rigidly-
attached mass m0j,  xj is the location of the pendulum hinge point for the jth slosh mass
mSj, Lj is the pendulum length for the jth mode, and I0j is the moment of inertia of the jth

rigid mass. The symbolism Yv(x0j) indicates, as an example, that the bending deflection is
evaluated at the x0j location.

Potential energies.   The potential energy is also composed of two parts, the empty vehicle
and the propellant. The potential energy of the empty vehicle is itself composed of two
parts, the elastic energy of deformation of the bending mode and the work done in raising
the vehicle in the gravitational field. The elastic part of the structural potential energy is:
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M is the bending moment and Q the shear force acting on an elemental cross section; EI
is the flexural stiffness, G is the shear modulus, and Ash is the shear area of the cross
section. The second form of the potential energy shown in Eq. (7.5a) involves the
bending frequency ωv available from a lateral bending analysis (likely, a finite element
elastic computer code). With this form, the potential energy can be written compactly as:

Bvev MPE 22
1 2

1 ηω= (7.5b)

where MB is the generalized bending mass of the vehicle structure, which is also
available from the lateral bending analysis. The gravitational part of the empty vehicle
potential energy is given by:

2
2 2

1 ϕ= vsev gxMPE (7.5c)

where xv is the coordinate of the center of mass of the empty vehicle.
The potential energy of the slosh is likewise composed of elastic-like energy

stored in the pendulums and gravitational energy. The total potential energy is:
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where a is the vehicle acceleration along the flight path resulting from the thrust18.
Energy dissipation functions.   Energy is dissipated by the damping of the structural

bending motion and by the damping of the propellant motions.
Structural damping is generally considered to be proportional to the amplitude of

the motion but in phase with the velocity of the motion. This conventional way of
expressing structural damping leads to complex elements (i.e., terms with real and
imaginary parts), that complicate the analysis considerably. Consequently, the damping
is here assumed to be based on an equivalent viscous damping which is proportional to
the amplitude of the bending mode velocity; this assumption is justified as long as the
damping is small and only of importance when the excitation frequency is near the
bending frequency. With this assumption, the dissipation function of the empty vehicle
is:

2
2
1 ηγω= &vBvev MD (7.7)

Here, γv is the structural damping coefficient of the bending vibration, which generally
has a value in the range of 0.001 to 0.05.

The dissipation function of the propellant motion is similarly:
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where γsj is the damping coefficient of the jth slosh mode.
Generalized forces.  The only external forces that act on the vehicle are the thrust forces: F1

which acts in the flight path direction, and F2 which is the part of the total thrust that can
be swiveled and used for control; the total thrust is F = F1 + F2 (which is not a vector
sum). We have to compute how these forces act on the vehicle to cause an acceleration in
each of the generalized coordinates.
The easiest way to do this is to
compute the virtual work when each
generalized force is given a virtual
increment δqi. The virtual work is
defined as:

∑ δ=δ ii qQW                   (7.9)

Figure 7.2 shows the thrust forces. The
stationary part of the force F1 acts
along the tank axis, but the axis itself is
deflected as a result of the elastic
bending motion. The swiveled part of
the force F2 is oriented at an angle β
with respect to the thrust. The figure
also shows the component of each

                                                     
18 The elastic energy is easier to understand for a spring-mass model. The energy stored in a spring is

0.5kj(yj)2 where yj is the spring-mass deflection. But the spring constant kj = mj(ωj)2 and ωj = (a/Lj)0.5  for
a pendulum; since yj = Lψj, the pendulum elastic energy is 0.5mjgL(ψj)2.
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Figure 7.2.  Generalized forces from thrust
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force that is aligned with the y motion of the vehicle center of mass.
The virtual work done by a virtual δy displacement is computed with the help of

the relations shown in the figure; it is:
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where xE is the coordinate of the swivel point. Comparing this expression to Eq. (7.9)
shows that the generalized force Qy for the y displacement is:

( )[ ] β+′η−ϕ= 2FxYFQ Evy (7.10b)

The virtual work done by a virtual rotation δϕ about the center of mass of the
vehicle is computed similarly:
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(Because we are taking moments about the vehicle axis, there are no terms included in
the work that depend on ϕ.). The generalized force Qϕ for the ϕ rotation is therefore:

( ) ( )[ ] β−η−′η=ϕ EEvEvE xFxYxYxFQ 2 (7.12b)

The virtual work done by a virtual bending displacement δη is found similarly.
Since the thrust force is perpendicular to the bending motion, only the part of F2 that is
proportional to the swivel angle does work. The generalized force is found to be:

( )Ev xYFQ β=η 2 (7.13)

The generalized force of the thrust with respect to the sloshing displacement is
zero; that is, Qψ = 0 for all ψj. Other external forces could also be considered if needed,
such as aerodynamic forces from wind gusts.

Generalized masses.  The vehicle mass m, moment of inertia I, and center of mass location,
and the linear and angular momentum of the structural vibration have to satisfy the
following definitions and constraints:
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where the integrations are to be performed over the total vehicle length. Equation (7.14c)
is the definition of the center of mass, and Eqs, (7.14d) and (7.14e) represent
conservation of linear and angular momentum for the bending mode.

Control law
The control system produces an angular deflection β of the swivel engine in accordance
with signals sensed by accelerometers and gyroscopes mounted on the booster. The
control equations cannot always be expressed as linear equations in terms of the
translation and rotations sensed by these instruments, because nonlinear effects can be
introduced from amplifier saturations, limited force and torque outputs of the devices
that swivel the engine, and so forth. But in the spirit of this simplified treatment, the
control equations are linearized nonetheless; this is acceptable when the control
frequencies and the translation and rotation frequencies are small.

For this example, we will assume that a gyroscope is mounted at a location xG on
the vehicle axis and that it produces an angular signal ϕG proportional to the angular
deflection at that point:

( )GvG xY ′η−ϕ=ϕ (7.15)

The time derivative of ϕG is available when needed from a differentiating network.
We will assume that the natural frequency of the control accelerometer is much

higher than either the control frequency or the frequencies of the vehicle translation and
rotation. The acceleration sensed by the accelerometer is then equal to the acceleration at
the sensor:

( ) ( )AvAvAA xYgxYgxyA ′η+η+ϕ−ϕ−= &&&&&& (7.16)

where xA is the location of the accelerometer relative to the center of mass.
A simple control law is assumed that relates the commanded swivel angle to the

accelerometer and gyro signals:

AGG Aaaa 210 +ϕ+ϕ=β & (7.17)

This law and the equations of the gyro and the accelerometer are considerably simplified
compared to actual control schemes used in practice [BAUER, 1963a; BLAKELOCK, 1991;
SALI, 1997]. It is common, for example, to use a rate gyroscope that gives an output
signal that is proportional to the angular velocity, and sometimes the damping of the
accelerometer is important. Furthermore, the control law generally includes phase-lag
coefficients to improve stability (i.e., the time derivatives of β are also controlled).

Equations of motion
We can now derive the equations of motion of the vehicle from Eq. (7.1) by using the
expressions for kinetic energy, potential energy, energy dissipation, and generalized
force, and then simplifying by introducing the generalized mass relations, Eqs. (6.19).

Translation.  The equation of motion for the translation of the vehicle center of mass is:
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Pitching.  The equation of motion for the pitching of the vehicle about the center of mass is
given by:
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Propellant.  The equations of motion for the moving propellants is given by:
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Bending.  The equation of motion for the structural bending vibration is:
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where the generalized mass MB of the bending vibration is given by:
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The solution of the equations of motion, Eqs. (7.18) – (7.21), and the control law, Eqs.
(7.15) – (7.17), have to be investigated to determine whether the vehicle flight is stable
and, if not, what must be done to make it stable.

7.2 Stability Analysis
Since all the equations of motion and the control law are linear with respect to the
generalized coordinates, the solution obtained from the equations for each of the
variables y, ϕ, η, ψ1, and ψ2 is of the form exp(st) where t is time and the frequency
parameter s can have real and imaginary parts: s = λ + iω,. If the real part of s is negative,
any perturbations to the vehicle flight path caused by a gust of wind or a programmed
change in the path will decay in time, and the flight path will be stable. Thus, the
stability analysis reduces to determining the conditions for which λ is negative.

Characteristic equation
When the assumed solution exp(st) is substituted into the equations of motion, each
equation reduces to an algebraic equation in the unknown complex frequency s. For
example, the translation equation of motion, Eq. (7.18), becomes:
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where y0 is the amplitude of the translation motion, ψ0j is the amplitude of the slosh mass
motion, and so on. Although this equation does not contain a complex term, other
equations of motion that include a first time derivative of a motion variable, such as Eq.
(7.20), would result in complex (real and imaginary) terms.

All but one of the motion variables, say ϕ0, can be eliminated by combining the
algebraic equations. This elimination process gives a single equation:
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where the total number of terms N is determined by the product of the number of
equations and the highest time derivative in any equation. The αn are products and sums
of products of the coefficients in the equations. The function inside the parenthesis is the
characteristic equation of the motion. Since ϕ0 is not zero in general, the characteristic
equation must itself be zero. The values of s that make the characteristic equation zero
are the roots or zeroes of the equation.

Optimization of the vehicle
response is based upon the possibility of
shifting these stability roots in the
complex plane (the root locus plane) in
such a fashion that they exhibit a larger
negative real part. Figure 7.3 illustrates
schematically how one root with a
positive real part and one root with a
negative real part move to more stable
locations when a physical parameter of
the system, such as an increase in the
slosh damping, is changed. When the
roots are all in the stable region, a
disturbance to the vehicle flight is
absorbed more rapidly. A convenient way
to study the migration of the roots is by plotting them as continuous functions in this
complex plane λ + iω. The effect of the change of any parameter can be obtained readily
from these plots.

For a real space vehicle, the characteristic equation is of a fairly high order; for the
simple example given by Eqs. (7.15) – (7.21), the highest power N is eight, but more
realistic cases would result in considerably higher powers. For a high order polynomial,
the roots must generally be found by numerical means. For design purposes, it is usually
sufficient to know whether the real parts of the roots are negative, thereby indicating
stability, or positive. When a design parameter is considered as a variable, it is especially
important to have a criterion for stability in terms of the roots. Criteria of this type are
given by ROUTH [1877], HURWITZ [1895], and NYQUIST [1932], to mention a few classic
examples. The Hurwitz method is fairly simple and will be illustrated here. Since the
parameters depend on the total mass of the vehicle and the position of the center of mass,

STABLE
REGION

UNSTABLE
REGION

ω

λ

X
X unstable

root

stable root

Arrow indicate increasing stability by changing
physical parameters of the system (root migration)

Figure 7.3.  Root locus plane
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the locations of the roots generally have to be found for the entire duration of the flight
by solving the equations at a number of different times.

Location of roots
A necessary and sufficient condition that all the roots of the characteristic

equation
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have only negative real parts is that all the αn be positive and the values of all the
determinants Hn be positive [HURWITZ, 1895]. The determinants Hn are defined as:
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and so on up to HN. Consequently, the flight stability of the vehicle can be adjusted by
finding values for the αn (i.e., the coefficients in the differential equations) that give
positive values for each and every Hn. How this is done is discussed in the next section.

7.3 Typical Conclusions of Stability Analyses
Many stability investigations have been conducted for large launch vehicles in which
sloshing was a concern [for example, GEISSLER, 1960; BAUER, 1961, 1963a, 1963b; HAYS
AND SUMRALL, 1964]. Some conclusions from these studies are summarized below.

• The gyroscope should be located in a region where dYv/dx > 0; that is, it should be
located behind the bending antinode.

• The accelerometer should be located forward of the instantaneous center of rotation
and preferably forward of the center of mass.

• Additional slosh damping must be provided by the use of baffles for tanks in the aft
portion of the vehicle because the stability boundary falls between the center of mass
and the instantaneous center of rotation.

These conclusions have to be verified for each specific application because stability
depends on a large number of factors, including control frequencies, slosh frequencies,
amplifier gains, slosh and structural damping, etc. However, the guidelines do provide a
starting point for such a more general investigation.
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TTTTABLEABLEABLEABLE A-1 A-1 A-1 A-1
Physical properties of some propellants and model liquids

The numerical values in the following two tables were taken directly from NASA SP-
106. The data correspond to room temperature except for cryogens, for which they
correspond to saturation temperature at one atmosphere. Contact angles are not listed
since they depend on the tank wall material; for most liquids, the contact angle is nearly
zero when the wall materials are those commonly used for scale model and propellant
tanks, the notable exception being mercury.

Common Propellants

Name Boiling
point, °C

Specific
gravity

Kinematic
viscosity,
cm2/sec

Vapor
pressure,

atm.

Surface
tension,

dynes/cm

Aerozine 70 0.904 0.0101 0.161 30.3
Ethanol 78 0.79 0.0158 0.058 22.3

Hydrazine 113 1.008 0.0097 0.0136 63-75
Hydrogen -253 0.071 0.00197 1.0 1.9

Hydrogen Peroxide 150 1.448 0.0087 < 0.007 80.4
Kerosene (RP-1) ≈ 220 0.806 0.0231 0.0014 23-32

Monomethylhydrazine 87 0.876 0.105 0.048 ? (≈ 30)
Nitrogen Tetroxide 21 1.447 0.00292 0.95 27.4

Oxygen -184 1.140 0.0017 1.0 13.2
Unsym-

dimethylhydrazine 64 0.793 0.00695 0.162 24.4-27.7

Model liquids

Name Boiling
point, °C

Specific
gravity

Kinematic
viscosity,
cm2/sec

Vapor
pressure,

atm.

Surface
tension,

dynes/cm

Acetone 56 0.792 0.00417 0.24 23.7
Carbon Disulfide 46 1.26 0.00288 0.39 32.2

Ethyl Bromide 38 1.44 0.0027 0.51 24.2
Glycerol 290 1.26 12.0 << 0.0001 63

Glycerol-H20 mixes -- 1.0–1.26 0.0.01 – 12.0  -- To 63.4
Methanol 64 0.792 0.00745 0.125 22.6

Methylene Chloride 40 1.34 0.0033 0.46 26.5
Methylene Bromide 98 2.46 0.005 0.053 ≈ 25

Nitrogen - 198 0.815 0.0021 1.0 ≈ 25
Silicone Oil High 0.76-0.90 0.0066-0.031 Low ≈ 25

Sucrose Solutions ≈ 100 1.1-1.29 0.017-0.43 Low ≈ 25-63
Water 100 0.998 0.0101 Low to 73.4
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A
Analogy, mechanical; see mechanical model

B
Baffles, flexible, 35

flexibility parameter, 35
period parameter, 35

Baffles, ring, 30
damping coefficient - cylindrical tank, 32
design value of damping, 33
effect of flexibility, 35
effect on slosh frequency, 34
general damping coefficient, 31
holes - effect of, 35
near a free surface, 32
spherical or spheroidal tank, 34
theory, 30

Bond number, 68
Bubbles

in low-g, 72
Bulkheads, perforated, 37

damping, 37

C
Capillary systems, 70

capillary area, 71
metastable configurations, 72
minimum capillary area, 72
non-isothermal, 72
thermodynamics, 70

CASSINI spacecraft
mechanical model, 58

Circular cylindrical tank
damping by ring baffles, 32
energy dissipation, 149
inertia modes, 143
inertia modes (slow spin rate), 135
interface stability in zero-g, 77
low-g sloshing, 89
mechanical model, 48
viscous damping, 28

Configuration, preferred in low-g, 72
Contact angle, 66
Cylindrical tank - spherical dome

viscous damping, 29

D
Damping

baffles - non-ring, 37
circular cylindrical tank, 28

cylindrical tank with spherical dome, 29
effect on slosh force and torque, 26
experimental methods, 27
floating lids, mats, and cans, 35
low-g effects, 92
membranes and diaphragms, 36
perforated bulkheads, 37
ring baffles, 30
spherical tank, 29
spheroidal tank - oblate, 30
toroidal tank - horizontal, 30
viscous, 28

Damping coefficient, 26
Damping ratio. See Damping coefficient
Drop tower, 65
Drops

in low-g, 72

E
Energy dissipation, 146

air-bearing spin table method, 146
analytical approximation, 153
analytical methods, 149
cylindrical tank, 154
experimental methods, 147
forced-motion spin-table method, 148
free-fall method, 148
spherical tank, 149, 150

F
Fluid management in low-g

cryogenic fluids, 108
drain vortex, 95
fine mesh screens and perforated plates, 99
galleries or channels, 105
heat transfer with cryogens, 108
interaction of wicking and bubble point -

cryogens, 110
liquid acquisition devices, 97
liquid inflow to a tank, 95
liquid management device - types, 197
liquid settling and gas venting, 93
partial communication devices, 98
PMD designs (various), 98
PMD/LAD design, 103
pressure drop across screens, 102
refillable devices, 98
refillable trap or start basket, 103
suction dip during outflow, 94
tank filling and transfer - cryogens, 109
thermodynamic vent system, 109
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total communication devices, 98
total control devices, 99
ullage bubble collapse - cryogens, 111
vanes, 107

Froude number, 69

G
Gas-liquid separation; see spinning tank

H
Heat transfer

cryogenic fluids, 108
Hydrodynamics in low-g, 65, 69
Hydrostatics in low-g, 65, 69

I
Inertia mode (spinning tank)

cylindrical tank (slow spin rate), 135
cylindrical tank, 143
defined, 132
mode collapse, 150
spherical tank, 143

Interface configuration - non-axisymmetric
low-g, 75

Interface shape
low-g, 73

Interface stability
spinning tank, 150

Interface stability (zero-g)
annular interface, 79
cylindrical tank, 77
general criteria, 80
spherical tank, 79

Interfaces
stability in zero-g, 77

L
Liquid management; see fluid management in

low-g
Logarithmic decrement, 26
Low-g response times, 69

M
Magnetic simulation of low-g, 65
Mechanical model

analytical derivation of parameters, 44
CASSINI spacecraft, 58
cylindrical tank, 48
equations of motion, 44
experimental derivation of parameters, 51
inclusion of damping, 49
large amplitude effects by CFD, 58
low-g sloshing, 88
nonlinear, 55
rectangular tank, 46
rotary slosh, 55

SKYLAB, 51
SLOSH code, 51
spherical tank, 48
spheroidal tank with bladder, 54
TDRS tanks, 54

Microgravity - defined, 65
see zero-g

N
Nutation, 131

angular velocity, 143
coning amplitude, 131

Nutation time constant, 146

P
Propellant management devices

cryogenic fluid failures, 111
design considerations, 103
effects of cryogenic fluids, 108
galleries and channels, 105
refillable trap or start basket, 103
vanes, 107

R
Rectangular tank

inertia modes, 140
mechanical model, 46

Reorientation;. see Settling time in low-g

S
Screens, fine mesh

bubble point, 100
cross flow pressure drop, 102
design for fluid management, 99
geometric and flow data (table), 103
geometry, 100
wicking, 100

Settling time in low-g, 80
SLOSH code

mechanical model, 51
theory and equations, 60

Sloshing rotary
nonlinear theory, 125

Sloshing, lateral
analysis by finite element codes, 23
analysis by SLOSH code, 2
Bernoulli's equation, 3
boundary conditions, 3
circular cylindrical tank, 14
cylindrical tank - horizontal, 16
damping, 26
defined, 1
eigenfunctions, 6
eigenvalues, 6
fundamental antisymmetric mode, 2
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linear theory, 2
low-g effects, 85
mechanical model, 1
natural frequencies, 8
nonlinear effects, 121
rectangular tank - lateral motion, 9
rectangular tank - pitch motion, 11
rectangular tank - roll motion, 13
rectangular tank solution, 5
rotary, 58
sector-annular cylindrical tank, 15
slowly spinning tank, 133
spherical tank, 18
spheroidal tank, 18
toroidal tank, 19
velocity potential, 3
wave shapes, 8

Sloshing, longitudinal. See Sloshing, vertical
Sloshing, low-g

axisymmetric tank theory, 82
boundary conditions, 83
contact line effects, 88
cylindrical tank, 89
forces and torques, 87
lateral sloshing, 82
mechanical model, 89
spherical tank, 90
spheroidal tank, 93
viscous damping, 92

Sloshing, nonlinear
basic theory, 119
compartmented cylindrical tanks, 118
maximum wave amplitude estimate, 117
method of successive approximations, 120
rotary sloshing, 125
spherical tanks, 119

Sloshing, rotary, 56
conical pendulum - chaos effects, 58
mechanical model, 56

Sloshing, vertical, 21
subharmonic and superharmonic

responses, 21
Spacecraft stability and control, 157

characteristic equation, 163
control law, 162
equations of motion, 157
guidelines, 165
Hurwitz crierion for stablility, 164
stability analysis, 163

Spherical tank
damping by ring baffles, 34
energy dissipation, 148, 149
inertia modes, 143
interface stability in zero-g, 79
low-g sloshing, 90

mechanical model, 48
nonlinear lateral sloshing, 119
viscous damping, 29

Spheroidal tank
low-g sloshing, 91
viscous damping, 30

Spheroidal tanks
damping by ring baffles, 34

Spinning tank
cylindrical tank - inertia modes, 143
cylindrical tank (slow spin rate), 134
effect of energy dissipation, 131
energy dissipation, 146
flat spin, 131
forced tank motion (nutation), 143
forces and torques, 143
free surface modes, 135
homogeneous vortex model, 139
inertia modes, 132
inertia modes - rectangular tank, 140
inertia modes (slow spin rate), 135
interface stability, 150
liquid motion for slow spin rate, 133
liquid motion regimes, 132
liquid-vapor separation, 150
nutation, 131
nutation time constant, 147
off-axis tank (exact theory), 140
off-axis tank (approximate theory), 139
spherical tank - inertia modes, 143

Surface tension, 66

T
Toroidal tank

damping, 30

W
Weber number, 69

Z
Zero-g

defined, 65
interface formation times, 81
interface shape, 73
Interface stability, 76
interface stability criteria, 80
multiple interfaces, 76
neutrally stable interface, 79
preferred configurations, 72
stability of annular interface, 79
stability of cylindrical tank interface, 78
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