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The mobility µ is defined as the proportionality constant relating drift velocity vd to the electric
field E:

vd = µE (1)

It is strongly temperature dependent, For high purity silicon at low fields, Jacobini et al.1( and,
presumably, his reference Conwell2) give

µ (T,E ≈ 0) = A T−γ , (2)

where for holes A = 1.35 cm2KγV−1s−1 and γ = 2.20. But vd is not a linear function of E. We
write

µ (T,E) ≡ µ (T, 0) m (T,E) . (3)

Canali et al.3 obtain a good fit to experimental data with

m (T,E) ≈
[
1 + (E/Ec)

β
]−1/β

, (4)

where, again for holes, Ec = 1.24 T 1.68, and β = 0.46 T 0.17. As can be seen, Ec is the saturation field
at which vd becomes constant, For the case of the LBNL CCD’s, E is typically (100V)/(200 µm)
= 5 kV/cm; the nonlinearity is important,

The diffusion constant D is also temperature and field dependent; we define the field correction
δ(T,E) by

D (T,E) = D (T, 0) δ (T,E) . (5)

Jacobini et al. indicate in their Fig. 13, for holes at 300 K, D decreases by a factor of 0.55 between
0 and 5 kV/cm. At that time experimental data were not available for other temperatures, and
we have not yet found the relevant data. (Transverse diffusion of holes.) This decrease would
decrease the variance by a factor of 0.75, nearly canceling the increase via m(T,E). Pending better
information, we assume that the correction factor δ(T,E) is unity.

In thermal equilibrium the Einstein equation relates D and µ: D/µ = kT/q. In the high-field
case with “hot” carriers, this equilibrium does not obtain, so we must use D(T, 0)/µ(T, 0) = kT/q.

We are interested in the transverse diffusion of holes produced near the back of an overdepleted
CCD (thickness yD) with electric field E(y) given by Eqns. 4 and 5 in Ref. 4. The variance σ
increases by

dσ2 = 2D dt

= 2D
dy

vd

=
2kT

q

δ (T,E)
m (T,E) E (y)

dy

(6)

in the time dt that elapses while the hole moves from y to y + dy. The variance is thus

σ2 =
2kT

q

∫ yD

0

δ (T,E)
m (T,E) E (y)

dy . (7)



In the asymptotic case

E (y) → 〈E (y)〉 = Vappl/yD = (Vsub − VJ′) /yD ,

and

σ2
asymp =

2kT

q

δ (〈E〉, T ) y2
D

m (〈E〉, T ) (Vsub − VJ′)
. (8)

(to be extended after we learn something about δ(T,E).
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Figure 1: Effect of mobility saturation from Eq. (7). m(T,E) = 1 for the case
marked “Without mobility saturation,” and with Canali’s form (Eq. (4)) for the
case marked “With mobility saturation.” There are no parameters in the theoret-
ical curve except for VJ′ , to which the higher-voltage result is insensitive. In both
cases, the diffusion is field-independent, i.e., δ(T,E) = 1. The experimental data
were reported in Ref. 5. The discrepant results for 25–50 V are not understood.
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